Hyperparameter tuning and performance assessment of statistical and machine-learning models using spatial data.
Creators
- 1. Friedrich-Schiller-University Jena
- 2. NEIKER Tecnalia
- 3. TU Dortmund
Description
This is a research compendium (RC) for the publication "Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data".
The code (including figures, appendices and the manuscript) is packed in pathogen-modeling-3.zip or can be found directly in the Github repository.
- Publication figures: analysis/paper/submission/3/latex-source-files/
- Appendices: analysis/paper/submission/3/
This RC represents a static snapshot at the time of submission. The Github repository will receive changes after the publication was published.
Data sources
- Atlas Climatico: http://opengis.uab.es/wms/iberia/index.htm
- DEM: ftp://ftp.geo.euskadi.eus/lidar/MDE_LIDAR_2016_ETRS89/
- Lithology: http://www.geo.euskadi.eus/geonetwork/srv/spa/main.home
- pH: https://esdac.jrc.ec.europa.eu/content/soil-ph-europe#tabs-0-description=0
- soil: https://www.isric.org/explore/soilgrids
Licenses
All files are shared via the given license with the exception of "soil.tif" which is shared via the ODbL license.
Files
atlas-climatico.zip
Files
(5.7 GB)
Name | Size | Download all |
---|---|---|
md5:15d998deb8e419f347059a527c7035a5
|
4.0 GB | Preview Download |
md5:f4b54c461cf4a1f3f3ddcc8e63896d6b
|
934.4 MB | Preview Download |
md5:774b6fe27ca98401626f34dde3dda740
|
483.3 kB | Download |
md5:1b989e12b54ffcfcb9f9fbe41348c72c
|
3.9 MB | Preview Download |
md5:5897035ccd5d95f0708c99cd2afb0edb
|
217.1 kB | Download |
md5:e40e359352090b56f3116de286b3324e
|
23.8 MB | Preview Download |
md5:b2e1f22bd0692c2d75f05b0d400740c3
|
343.1 MB | Preview Download |
md5:b6e7828a37927ce03771760bcaa9f12a
|
392.1 MB | Preview Download |
md5:8b591041e0b04d1d3334ac0bfd44cc7e
|
127.0 kB | Download |
Additional details
Related works
- Is cited by
- 10.1016/j.ecolmodel.2019.06.002 (DOI)
- Is new version of
- https://arxiv.org/abs/1803.11266 (URL)