Dataset Open Access

Dataset for: Multivascular networks and functional intravascular topologies within biocompatible hydrogels

Miller, Jordan

Dataset for:

Multivascular networks and functional intravascular topologies within biocompatible hydrogels

Bagrat Grigoryan1,∗, Samantha J. Paulsen1,∗, Daniel C. Corbett2,∗, Daniel W. Sazer1, Chelsea L. Fortin2, Alexander J. Zaita1, Paul T. Greenfield1, Nicholas J. Calafat1, John P. Gounley3, Anderson H. Ta1, Fredrik Johansson2, Amanda Randles3, Jessica E. Rosenkrantz4, Jesse D. Louis-Rosenberg4, Peter A. Galie5, Kelly R. Stevens2,†, Jordan S. Miller1,†

1Department of Bioengineering, Rice University, Houston, TX 77005, USA 2Department of Bioengineering, University of Washington, Seattle, WA 98195, USA 3Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA 4Nervous System, Somerville, MA 02143, USA 5Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA

∗Equal contribution. †Corresponding authors. Email: ksteve@uw.edu (K.R.S.) and jmil@rice.edu (J.S.M.).

Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex 3D transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels produced in minutes comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deployed structured biodegradable hydrogel carriers in a rodent model of hepatic disease to highlight the potential translational utility of this materials innovation.

Files (42.8 GB)
Name Size
Grigoryan-et-al-2019-Science-FullDataset-v2.zip
md5:d4b91304c971baa55e3c28e27ffc37ed
14.0 GB Download
Grigoryan-et-al-2019-Science-FullDataset.tar.gz
md5:34bb063ddcc7418d97d244eb8f0cd10f
14.4 GB Download
Grigoryan-et-al-2019-Science-FullDataset.zip
md5:177e0944ffb6f949ef921bea47c7b30d
14.5 GB Download
LICENSE--Grigoryan-et-al-2019-Science-ArticleTitleAndAbstract.txt
md5:774d04bc3d953baac95e99835f57422f
23.5 kB Download
707
802
views
downloads
All versions This version
Views 707707
Downloads 802802
Data volume 11.2 TB11.2 TB
Unique views 613613
Unique downloads 240240

Share

Cite as