Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published December 21, 2018 | Version v1
Journal article Open

The Extended Kalman Filter in the Dynamic State Estimation of Electrical Power Systems

  • 1. Escuela Superior Politécnica del Litoral - ESPOL

Description

Abstract

The state estimation and the analysis of load flow are very important subjects in the analysis and management of Electrical Power Systems (EPS). This article describes the state estimation in EPS using the Extended Kalman Filter (EKF) and the method of Holt to linearize the process model and then calculates a performance error index as indicators of its accuracy. Besides, this error index can be used as a reference for further comparison between methodologies for state estimation in EPS such as the Unscented Kalman Filter, the Ensemble Kalman Filter, Monte Carlo methods, and others. Results of error indices obtained in the simulation process agree with the order of magnitude expected and the behavior of the filter is appropriate due to follows adequately  the true value of the state variables. The simulation was done using Matlab and the electrical system used corresponds to the IEEE 14 and 30 bus test case systems. State Variables to consider in this study are the voltage and angle magnitudes.

Notes

http://ingenieria.ute.edu.ec/enfoqueute/index.php/revista/article/view/407

Files

407-Article Text-1595-1-10-20181212.pdf

Files (688.6 kB)

Name Size Download all
md5:3193da3f0cdc97f5f96cfbecb076f90e
688.6 kB Preview Download