Published March 4, 2019
| Version v1
Dataset
Open
Analyzing the importance of spatial autocorrelation in hyperparameter tuning and performance estimation of machine-learning algorithms for spatial data.
Creators
- 1. Friedrich-Schiller-University Jena
- 2. NEIKER Tecnalia
- 3. TU Dortmund
Description
This repository will contain the research compendium of our work on comparing algorithms across different resampling settings.
Files
atlas-climatico.zip
Files
(5.3 GB)
Name | Size | Download all |
---|---|---|
md5:15d998deb8e419f347059a527c7035a5
|
4.0 GB | Preview Download |
md5:f4b54c461cf4a1f3f3ddcc8e63896d6b
|
934.4 MB | Preview Download |
md5:45847d43dbaf34717efa2ed8c1b44113
|
536.6 kB | Download |
md5:1b989e12b54ffcfcb9f9fbe41348c72c
|
3.9 MB | Preview Download |
md5:063db5594a9d534cddc09bf47b9d04dd
|
221.2 kB | Download |
md5:e40e359352090b56f3116de286b3324e
|
23.8 MB | Preview Download |
md5:b6e7828a37927ce03771760bcaa9f12a
|
392.1 MB | Preview Download |
md5:8b591041e0b04d1d3334ac0bfd44cc7e
|
127.0 kB | Download |
Additional details
Related works
- Is new version of
- https://arxiv.org/abs/1803.11266 (URL)