Published November 19, 2018 | Version final
Journal article Open

A constrained wind farm controller providing secondary frequency regulation: An LES study

  • 1. Delft University of Technology
  • 2. Catalonia Institute for Energy Research

Description

Active power control for wind farms is needed to provide ancillary services. One of these services is to track a power reference signal with a wind farm by dynamically de- and uprating the turbines. In this paper we present a closed-loop wind farm controller that evaluates 1) thrust coefficients on a seconds-scale that provide power tracking and minimize dynamical loading on a farm level and 2) yaw settings on a minutes-scale that maximize the possible power that can be harvested by the farm. The controller is evaluated in a high-fidelity wind farm model. A six-turbine simulation case study is used to demonstrate the time-efficient controller for different controller settings. The results indicate that, with a power reference signal below the maximal possible power that can be harvested by the farm with non-yawed turbines, both tracking and reduction in dynamical loading can be ensured. In a second case study we illustrate that, when a wind farm power reference signal exceeds the maximal possible power that can be harvested with non-yawed turbines for a time period, it can not be tracked sufficiently. However, when solving for and applying optimized yaw settings, tracking can be ensured for the complete simulation horizon.

Files

1-s2.0-S0960148118313508-main.pdf

Files (2.0 MB)

Name Size Download all
md5:3ce4e6d8030ceda3e521660761258b6b
2.0 MB Preview Download

Additional details

Funding

CL-Windcon – Closed Loop Wind Farm Control 727477
European Commission