Journal article Open Access

Online model calibration for a simplified LES model in pursuit of real-time closed-loop wind farm control

Doekemeijer, Bart M; Boersma, Sjoerd; Pao, Lucy Y; Knudsen, Torben; van Wingerden, Jan-Willem

Wind farm control often relies on computationally inexpensive surrogate models to predict the dynamics inside a farm. However, the reliability of these models over the spectrum of wind farm operation remains questionable due to the many uncertainties in the atmospheric conditions and tough-to-model dynamics at a range of spatial and temporal scales relevant for control. A closed-loop control framework is proposed in which a simplified model is calibrated and used for optimization in real time. This paper presents a joint state-parameter estimation solution with an ensemble Kalman filter at its core, which calibrates the surrogate model to the actual atmospheric conditions. The estimator is tested in high-fidelity simulations of a nine-turbine wind farm. Exclusively using measurements of each turbine’s generated power, the  adaptability to modeling errors and mismatches in atmospheric conditions is shown. Convergence is reached within 400 s of operation, after which the estimation error in flow fields is negligible. At a low computational cost of 1.2 s on an 8-core CPU, this algorithm shows comparable accuracy to the state of the art from the literature while being approximately 2 orders of magnitude faster.

Files (14.4 MB)
Name Size
wes-3-749-2018.pdf
md5:a8e583d3c0b1716f5ec9a73f386d21a7
14.4 MB Download
24
18
views
downloads
All versions This version
Views 2424
Downloads 1818
Data volume 259.3 MB259.3 MB
Unique views 1919
Unique downloads 1717

Share

Cite as