Published December 1, 2018 | Version v1
Journal article Open

The EIMB Hydrogel Microarray Technology: Thirty Years Later

  • 1. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Description

Biological microarrays (biochips) are analytical tools that can be used to implement complex integrative
genomic and proteomic approaches to the solution of problems of personalized medicine (e.g., patient
examination in order to reveal the disease long before the manifestation of clinical symptoms, assess the severity
of pathological or infectious processes, and choose a rational treatment). The efficiency of biochips is predicated
on their ability to perform multiple parallel specific reactions and to allow one to study the interactions of
biopolymer molecules, such as DNA, proteins, glycans, etc. One of the pioneers of microarray technology was the
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences (EIMB), with its suggestion to
immobilize molecular probes in the three-dimensional structure of a hydrophilic gel. Since the first experiments
on sequencing by hybridization on oligonucleotide microarrays conducted some 30 years ago, the hydrogel microarrays
designed at the EIMB have come a long and successful way from basic research to clinical laboratory
diagnostics. This review discusses the key aspects of hydrogel microarray technology and a number of state-ofthe-
art approaches for a multiplex analysis of DNA and the protein biomarkers of socially significant diseases,
including the molecular genetic, immunological, and epidemiological aspects of pathogenesis.

Files

AN39EN-Gryadunov-4-18.pdf

Files (11.0 MB)

Name Size Download all
md5:3be4c1b28ab419ed87c051cc663ee58b
11.0 MB Preview Download

Additional details

References

  • Marzancola, M.G. et al. (2016). DNA Microarray-Based Diagnostics. Methods Mol. Biol. 1368:161-78. doi: 10.1007/978-1-4939-3136-1_12.
  • Rosenfeld, S. (2010). Do DNA Microarrays Tell the Story of Gene Expression? Gene Regul. Syst. Bio. 4:61–73.
  • Eklund, A.C., Szallasi, Z. (2008). Correction of technical bias in clinical microarray data improves concordance with known biological information. Genome Biol. 2008. 9(2):R26. doi: 10.1186/gb-2008-9-2-r26
  • Salazar, R. et al. (2011). Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol. 29(1):17-24. doi: 10.1200/JCO.2010.30.1077
  • Damin, F. et al. (2016). DNA microarray-based solid-phase PCR on copoly (DMA-NAS-MAPS) silicon coated slides: An example of relevant clinical application. Biosens. Bioelectron. 78:367-373. doi: 10.1016/j.bios.2015.11.091
  • Le Goff, G.C. et al. (2015). Hydrogel microparticles for biosensing. Eur Polym J. 72:386-412. doi: 10.1016/j.eurpolymj.2015.02.022
  • Beyer, A. et al. (2014). Easy daylight fabricated hydrogel array for colorimetric DNA analysis. Macromol Biosci. 14(6):889-98. doi: 10.1002/mabi.201300487
  • Yershov G., et al. (1996). DNA analysis and diagnostics on oligonucleotide microchips. Proc Natl Acad Sci U S A. 93(10):4913-8. doi: 10.1073/pnas.93.10.4913
  • Rubina, A. et al. (2004). Hydrogel drop microchips with immobilized DNA: properties and methods for large-scale production. Anal Biochem. 325(1):92-106. doi: 10.1016/j.ab.2003.10.010
  • Rubina, A. et al. (2008). Why 3-D? Gel-based microarrays in proteomics. Proteomics. 8(4):817-31. doi: 10.1002/pmic.200700629
  • Khrapko, K. et al. (1989). An oligonucleotide hybridization approach to DNA sequencing. FEBS Lett. 256(1-2):118-22. doi: 10.1016/0014-5793(89)81730-2
  • Sorokin, N.V. et al. (2005). Discrimination between perfect and mismatched duplexes with oligonucleotide gel microchips: role of thermodynamic and kinetic effects during hybridization. J Biomol Struct Dyn. 22(6):725-34. doi: 10.1080/07391102.2005.10507039
  • Pan'kov, S.V. et al. (2009). Kinetic effects on signal normalization in oligonucleotide microchips with labeled immobilized probes. J Biomol Struct Dyn. 27(2):235-44. doi: 10.1080/07391102.2009.10507312
  • Gryadunov, D. et al. (2005). Evaluation of hybridisation on oligonucleotide microarrays for analysis of drug-resistant Mycobacterium tuberculosis. Clin Microbiol Infect. 11(7):531-9. doi: 10.1111/j.1469-0691.2005.01183.x
  • Zimenkov, D.V. et al. (2016). Simultaneous drug resistance detection and genotyping of Mycobacterium tuberculosis using a low-density hydrogel microarray. J Antimicrob Chemother. 71(6):1520-31. doi: 10.1093/jac/dkw015
  • Zimenkov, D.V. et al. (2013). Detection of second-line drug resistance in Mycobacterium tuberculosis using oligonucleotide microarrays. BMC Infect Dis. 13:240. doi: 10.1186/1471-2334-13-240.
  • Shershov, V.E. et al. (2017). Comparative Study of Novel Fluorescent Cyanine Nucleotides: Hybridization Analysis of Labeled PCR Products Using a Biochip. J. Fluoresc. 27(6):2001–2016. doi: 10.1007/s10895-017-2139-6
  • Zasedateleva, O. et al. (2018). dUTPs conjugated with zwitterionic Cy3 or Cy5 fluorophore analogues are effective substrates for DNA amplification and labelling by Taq polymerase. Nucleic Acids Res. 46(12):e73. doi: 10.1093/nar/gky247
  • Rubina, A. et al. (2003). Hydrogel-based protein microchips: manufacturing, properties, and applications. Biotechniques. 34(5):1008-14, 1016-20, 1022. doi: 10.2144/03345rr01
  • Lysov, Y. et al. (2017). Microarray analyzer based on wide field fluorescent microscopy with laser illumination and a device for speckle suppression. Biomed Opt Express. 8(11):4798-4810. doi: 10.1364/BOE.8.004798
  • Gryadunov, D. et al. (2011). Gel-based microarrays in clinical diagnostics in Russia. Expert Rev Mol Diagn. 11(8):839-53. doi: 10.1586/erm.11.73
  • Kurbatova, E. et al. (2013). Performance of Cepheid ® Xpert MTB/RIF ® and TB-Biochip ® MDR in two regions of Russia with a high prevalence of drug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis. 32(6):735-43. doi: 10.1007/s10096-012-1798-0
  • Nosova, E. et al. (2013). Comparative analysis of TB-Biochip, Xpert MTB/RIF, and GenoType MTBDRplus test systems for rapid determination of mutations responsible for drug resistance of M. tuberculosis complex (in sputum from patients in Moscow region). Mol. Biol. 47(2):236-241. doi: 10.7868/S0026898413010102
  • Vasil'eva, I.A. et al. (2012). Chemotherapy of tuberculosis: problems and perspectives. Vestn Ross Akad Med Nauk. 11:9-14
  • Daurov, R.B. et al. (2010). Tuberk. Bolezni Legkih. 87(4):10–13
  • Mokrousov, I. et al. (2015). Trends in molecular epidemiology of drug-resistant tuberculosis in Republic of Karelia, Russian Federation. BMC Microbiol. 15:279. doi: 10.1186/s12866-015-0613-3.
  • Koser, C.U. et al. (2014). Comment on: characterization of the embB gene in Mycobacterium tuberculosis isolates from Barcelona and rapid detection of main mutations related to ethambutol resistance using a low-density DNA array. J Antimicrob Chemother. 69(8):2298-9. doi: 10.1093/jac/dku101
  • Nosova, E. et al. (2016). A Comparison of the Sensititre MycoTB Plate, the Bactec MGIT 960, and a Microarray-Based Molecular Assay for the Detection of Drug Resistance in Clinical Mycobacterium tuberculosis Isolates in Moscow, Russia. PLoS One. 11(11):e0167093. doi: 10.1371/journal.pone.0167093
  • Zimenkov, D.V. et al. (2017). Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother. 72(7):1901-1906. doi: 10.1093/jac/dkx094
  • Bespyatykh, J.A. et al. (2014). Spoligotyping of Mycobacterium tuberculosis complex isolates using hydrogel oligonucleotide microarrays. Infect Genet Evol. 26:41-6. doi: 10.1016/j.meegid.2014.04.024
  • Zimenkov, D.V. et al. (2015). Evaluation of a low-density hydrogel microarray technique for mycobacterial species identification. J Clin Microbiol. 53(4):1103-14. doi: 10.1128/JCM.02579-14
  • Shaskolskiy, B. et al. (2016). Drug Resistance Mechanisms in Bacteria Causing Sexually Transmitted Diseases and Associated with Vaginosis. Front Microbiol. 7:747. doi: 10.3389/fmicb.2016.00747
  • Leinsoo, A.T. et. al. (2017). Oligonucleotide Microchip for the Identification of Infectious Agents of Reproductive System with Simultaneous Analysis of Determinants of Resistance to Antimicrobial Substances. Bull Exp Biol Med. 164(1):54-60. doi: 10.1007/s10517-017-3925-5
  • Shaskolskiy, B. et al. (2018). Tetracycline resistance of Neisseria gonorrhoeae in Russia, 2015-2017. Infect Genet Evol. 63:236-242. doi: 10.1016/j.meegid.2018.06.003
  • Kubanov, A. et al. (2016). Molecular epidemiology of drug-resistant Neisseria gonorrhoeae in Russia (Current Status, 2015). BMC Infect Dis. 16:389. doi: 10.1186/s12879-016-1688-7
  • Kubanov, A. et al. (2017). Drug resistance mutations and susceptibility phenotypes of Neisseria gonorrhoeae isolates in Russia. Mol. Biol. 51(3):431-441. doi: 10.7868/S0026898417030119
  • Harris, S.R. et al. (2018). Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey. Lancet Infect Dis. 18(7):758-768. doi: 10.1016/S1473-3099(18)30225-1
  • Welzel, T.M. et al. (2017). Global epidemiology of HCV subtypes and resistance-associated substitutions evaluated by sequencing-based subtype analyses. J Hepatol. 67(2):224-236. doi: 10.1016/j.jhep.2017.03.014
  • Manns, M.P. et al. (2017). Hepatitis C virus infection. Nat Rev Dis Primers. 3:17006. doi: 10.1038/nrdp.2017.6
  • Gryadunov, D. et al. (2010). Hepatitis C virus genotyping using an oligonucleotide microarray based on the NS5B sequence. J Clin Microbiol. 48(11):3910-7. doi: 10.1128/JCM.01265-10
  • Rodriguez-Frias, F. et al. (2017). High HCV subtype heterogeneity in a chronically infected general population revealed by high-resolution hepatitis C virus subtyping. Clin Microbiol Infect. 23(10):775.e1-775.e6. doi: 10.1016/j.cmi.2017.02.007
  • Soria, M.E, et al. (2018). Pipeline for specific subtype amplification and drug resistance detection in hepatitis C virus. BMC Infect Dis. 18(1):446. doi: 10.1186/s12879-018-3356-6
  • Nasedkina, T.V. et al. (2009). Diagnostic microarrays in hematologic oncology: applications of high- and low-density arrays. Mol Diagn Ther. 13(2):91-102. doi: 10.2165/01250444-200913020-00003
  • Nasedkina, T.V. et al. (2016). Biological microchip for establishing the structure of fusion transcripts involving MLL in children with acute leukemia. Mol Biol. 50(6):968-977. doi: 10.7868/S0026898416060148
  • Ikonnikova, A.Yu. et al. (2017). Patent 2639513. Russia.
  • Emelyanova, M. et al. (2015). Sensitive genotyping of somatic mutations in the EGFR, KRAS, PIK3CA, BRAF genes from NSCLC patients using hydrogel biochips. Appl Immunohistochem Mol Morphol. 23(4):255-65. doi: 10.1097/PAI.0000000000000084
  • Emelyanova, M. et al. (2017). Detection of BRAF, NRAS, KIT, GNAQ, GNA11 and MAP2K1/2 mutations in Russian melanoma patients using LNA PCR clamp and biochip analysis. Oncotarget. 8(32):52304-52320. doi: 10.18632/oncotarget.17014
  • Rubina, A.Yu. et al. (2010). Simultaneous detection of seven staphylococcal enterotoxins: development of hydrogel biochips for analytical and practical application. Anal Chem. 82(21):8881-9. doi: 10.1021/ac1016634
  • Duffy, M.J. et al. (2014). Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update. Int J Cancer. 134(11):2513-22. doi: 10.1002/ijc.28384
  • Kufe, D.W. (2009). Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer. 9(12):874-85. doi: 10.1038/nrc2761
  • Butvilovskaya, V.I. (2016). Multiplex determination of serological signatures in the sera of colorectal cancer patients using hydrogel biochips. Cancer Med. 5(7):1361-72. doi: 10.1002/cam4.692
  • Vazquez-Ortiz, M. et al. (2014). Ovalbumin-specific IgE/IgG4 ratio might improve the prediction of cooked and uncooked egg tolerance development in egg-allergic children. Clin Exp Allergy. 44(4):579-88. doi: 10.1111/cea.12273
  • Feyzkhanova, G.U. et al. (2014). Development of hydrogel biochip for in vitro allergy diagnostics.J Immunol Methods. 406:51-7. doi: 10.1016/j.jim.2014.03.003
  • Feyzkhanova, G. et al. (2017). Development of a microarray-based method for allergen-specific IgE and IgG4 detection. Clin Proteomics. 14:1. doi: 10.1186/s12014-016-9136-7
  • Voloshin, S. et al. (2018). Patterns of sensitization to inhalant and food allergens among pediatric patients from the Moscow region (Russian Federation). PLoS One. 13(3):e0194775. doi: 10.1371/journal.pone.0194775
  • Lysov, Iu P. et al. (1988). Determination of the nucleotide sequence of DNA using hybridization with oligonucleotides. A new method. Dokl Akad Nauk SSSR. 303(6):1508-11
  • Khodakov, D.A. et al. (2008). An oligonucleotide microarray for multiplex real-time PCR identification of HIV-1, HBV, and HCV. Biotechniques. 44(2):241-6, 248. doi: 10.2144/000112628
  • Kashkin, K.N. et al. (2005). Detection of single base polymorphism in p53 gene by ligase detection reaction and rolling circle amplification on microarrays. Mol. Biol. 39(1):26-34. doi: 10.1007/s11008-005-0004-1
  • Gootenberg, J.S. et al. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 360(6387):439-444. doi: 10.1126/science.aaq0179
  • Mamaev, D. et al. (2015). Rotary-based platform with disposable fluidic modules for automated isolation of nucleic acids. Biomed Microdevices. 17(1):18. doi: 10.1007/s10544-014-9920-y