Published January 28, 2019 | Version v1
Dataset Open

Snow accumulation patterns in a high mountain Andean catchment from optical tri-stereoscopic remote sensing

  • 1. Universidad de Chile
  • 2. Centre d'Etudes Spatiales de la Biosphère (CESBIO), Toulouse, France
  • 3. WSL, Switzerland

Description

1) DBSM_Data_RioYeso' = Automatic weather station (AWS) data from Yeso Embalse and Termas del Plomo meteorological stations (available from Chilean Water Directorate, 'Dirección General de Aguas' or 'DGA' http://www.arcgis.com/apps/OnePane/basicviewer/index.html?appid=d508beb3a88f43d28c17a8ec9fac5ef0), used to force a distributed blowing snow model of Essery et al. (1999) to derive spatial snow depth of the Rio del Yeso catchment, Chile. The format is as follows:

{'Year','Month','Day','Hour','Incoming shortwave radiation (Wm2)','Incoming longwave radiation (Wm2)','SnowfallRate(mm/hr)','RainfallRate(mm/hr)','Air temperature (celsius)','Relative humidity (%)','Wind speed (m s-1)','Compass wind direction','Air pressure (hPa)'};

2) 'snowHeightPleiadesREG' = A snow depth map (horizontal resolution 4m) derived from triplets of high resoution stereo optical satellite images (Pléiades) following the methodology of Marti et al. (2016). The snow depth map is derived for a high mountain catchment (Rio del Yeso) of the central Chilean Andes (see Burger et al., 2018).

3) 'L2_LiDAR_4m' = A LiDAR (Light detection and Ranging) spatial snow depth map at a horizontal resolution of 4 m. The data were captured by a Reigl VZ-6000 LiDAR scanner and generated from the difference of two constructed digital elevation models (DEMs) between the dates 13th September, 2017 (with snow) and 12th December, 2017 (without snow). 

4) 'L2_Pleiades_SDLidar_NEW' = The Pléiades snow depth map as described in 2), extracted by the areas of LiDAR scan described in 3)

5) 'SnowDepthResults' = A folder containing a corrected and gap-filled Pléiades snow depth map ('SD_PleiadesCORR') and for comparison: 'SD_TOPO', a statistical estimation of snow depth using topographic parameters and the regression equation of Grünewald et al. (2013) and; The physically based estimates of snow depth using the DBSM model as in 1) without snow transport for the 4th September, 2017 ('SD_EXTP_Sep04') and 13th September, 2017 ('SD_EXTP_Sep13') and with snow transport for those dates ('SD_Wind_Sep04','SD_Wind_Sep13').

6) 'rdyDEM' = An independent ASTER GDEM (https://asterweb.jpl.nasa.gov/gdem.asp) cut to the area of the study catchment (horizontal resolution = 30 m). 

7) 'PlanetScope_20170907_TPK' = An stitched optical PlanetScope image of the catchment (horizontal resolution of 3.25 m) derived from access under the research and teaching iniative (planet.com). 

Cited work:

Burger, F. et al. (2018) ‘Interannual variability in glacier contribution to runoff from a high ‐ elevation Andean catchment : understanding the role of debris cover in glacier hydrology’, Hydrological Processes, pp. 1–16. doi: 10.1002/hyp.13354.

Essery, R., Li, L. and Pomeroy, J. (1999) ‘A distributed model of blowing snow over complex terrain’, Hydrological Processes, 13(14–15), pp. 2423–2438. doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2423::AID-HYP853>3.0.CO;2-U.

Grünewald, T. et al. (2013) ‘Statistical modelling of the snow depth distribution in open alpine terrain’, Hydrology and Earth System Sciences, 17(8), pp. 3005–3021. doi: 10.5194/hess-17-3005-2013.

Marti, R. et al. (2016) ‘Mapping snow depth in open alpine terrain from stereo satellite imagery’, The Cryosphere, pp. 1361–1380. doi: 10.5194/tc-10-1361-2016.

Files

DBSM_Data_RioYeso.txt

Files (27.8 MB)

Name Size Download all
md5:620065edfbbdda464f526b86e1f143ae
310.8 kB Preview Download
md5:08115c9cbb20678f71b5835b623b6022
161.6 kB Preview Download
md5:1446eecabdfc370848dc5c7c13876f77
76.1 kB Preview Download
md5:260db235b852d2d63fedb97a8949138f
5.5 MB Preview Download
md5:eb7d7415a813f63df27fd02d995fa722
1.7 MB Download
md5:70429985b1e7cf55afcc2b0f4cebfb26
2.2 MB Preview Download
md5:c14e1cc8913d0110431163bea29c2165
17.8 MB Preview Download