Published December 31, 2018 | Version v1
Journal article Open

First considerations on environmental friendly solutions to protect the Southern Romanian coast

  • 1. Department of Civil and Environmental Engineering, Polytechnic University of Catalonia (DECA-UPC)
  • 2. National Institute of Marine Geology and Geo-Ecology (GeoEcoMar)
  • 3. International Centre for Research of Coastal Resources (CIIRC), Barcelona, Spain
  • 4. Laboratory of Maritime Engineering, Polytechnic University of Catalonia (LIM-UPC)

Description

The aim of this work is to assess the effect of a nature-based solution for reducing wave heights on the Southern Romanian coast. Apart from investigating the presence of seagrass from the environmental point of view, there is also a need to assess its impact on the coastal hydrodynamics. The impact on the wave heights of a seagrass meadow located on the Southern Romanian coast, has been analyzed by means of a wave model. In this purpose, several numerical simulations have been performed, both for low and average offshore wave conditions, available from a previous wave climate study, which used a 30 years climate data set. A first set of simulations have been performed in the absence of seagrass. Then a seagrass meadow has been added to our grid and the wave model has been run in the same offshore wave conditions. The differences in computed nearshore wave heights reach around 4% for moderate energy waves. These results show that, on the Southern Romanian coast, seagrass could be regarded as an additional measure for nearshore wave attenuation.

Files

02_DINU_web_2018[1].pdf

Files (2.9 MB)

Name Size Download all
md5:bedae02ad067854312b9b100919c9ead
2.9 MB Preview Download

Additional details

References

  • Airy G.B., 1841. Tides and waves. In Rose, H.J., et al., 1817-1845. Encyclopædia Metropolitana, Mixed Sciences, 3.
  • Blackmar P.J., Cox D.T., Wei-Chang W., 2013. Laboratory observations and numerical simulations of wave height attenuation in heterogeneous vegetation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 140(1), 56-65.
  • Booij N., Ris R.C., Holthuljsen L.H., 1999. A third-generation wave model for coastal regions, Part I, Model description and validation. Journal of Geophysical Research, 104 (c4), 7649-7666.
  • Borsje B.W., van Wesenbeeck B.K. , Dekker F., Paalvast P., Bouma T.J. , van Kat - wijk M.M., de Vries M., 2011. How ecological engineering can serve in coastal protection. Ecological Engineering, 37(2), 113-122.
  • Bouma T.J., van Belzen J., Balke T., Zhu Z., Airoldi L., Blight A.J., Davies A.J., Galvan C., Hawkins S.J., Hoggart S.P.G., Lara J.L., Losada I.J., Maza M., Ondiviela B., Skov M.W., Strain E.M., Thompson R.C., Yang S., Zanutt igh B., Zhang L., Herman P.M.J., 2014. Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: Opportunities & steps to take. Coastal Engineering, 87, 147-157.
  • Castell X., 2018. Estudio del uso de praderas submarinas como medida de protección costera. Master thesis, Universitat Politècnica de Catalunya.
  • Christianen M.J.A., van Belzen J., Herman P.M.J., van Katw ijk M.M., Lamers L.P.M., et al., 2013. Low-Canopy Seagrass Beds Still Provide Important Coastal Protection Services. PLoS ONE 8(5): e62413. doi:10.1371/journal.pone.0062413
  • Fonseca M.S., Fisher J.S., Zieman J.C., Thayer G.W., 1982. Influence of the seagrass, Zostera marina L., on current flow. Estuarine Coastal and Shelf Science, 15(4), 351-358.
  • Fonseca M.S., Cahalan J.H., 1992. A preliminary evaluation of wave attenuation by four species of seagrass. Estuarine, Coastal and Shelf Science, 35(6), 565-576.
  • Halcrow UK et al., 2011-2012. Master Plan 'Protection and Rehabilitation of the coastal zone'.
  • Holthuijsen L.H., 2007. Waves in Oceanic and Coastal Waters. New York, NY: Cambridge University Press.
  • Kirwan M. L., Megonigal J. P., 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504, 53-60.
  • Kobayashi N., Raichle A.W., Asano T., 1993. Wave attenuation by vegetation. Journal of Waterway, Port, Coastal and Ocean Engineering, 119(1), p. 30-48.
  • Koftis T., Prinos P., Stratigaki V., 2013. Wave damping over artificial Posidonia oceania meadow: a large-scale experimental study. Coastal Engineering, 73(1), 71-83.
  • Lin-Ye J., García-León M., Gràcia V., Ortego M.I., Stănică A., Sánchez-Arcilla A., 2018. Multivariate Hybrid Modelling of Future Wave-storms at the Northwestern Black Sea. Water 2018, 10(2), 221, doi:10.3390/w10020221.
  • Manca E., Caceres I., Alsina J.M., Strat igaki V., Townend I., Amos C.L., 2012. Wave energy and wave-induced flow reduction by full-scale model Posidonia oceania seagrass. Continental Shelf Research, 50-51(1), 100-116.
  • Marin O., Abaza V., Sava D., 2013. Phytobenthos - Key Biological element in shallow marine waters. Cercetări Marine, 43, 197-218.
  • Möller I., Spencer T., French J.R., Leggett D.J., Dixon M., 1999. Wave Transformation Over Salt Marshes: A Field and Numerical Modelling Study from North Norfolk, England. Estuarine, Coastal and Shelf Science, 49(3), 411-426.
  • Möller, I., 2006. Quantifying saltmarsh vegetation and its effect on wave height dissipation: Results from a UK east coast saltmarsh. Estuarine, Coastal and Shelf Science, 69(3-4), 337-351.
  • Möller I., Kudella M., Rupprecht F., Spencer T., Paul M., van Wesenbeeck B.K., Wolters G., Jensen K, Bouma T.J., Miranda -Lange M., Schimmels S., 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience, 7(10), 727-731.
  • Monclús i Bori A., 2018. Environmental friendly measures to protect the Romanian coast. Final Degree Thesis. Department of Civil and Environmental Engineering, Polytechnic University of Catalonia (DECA-UPC), Barcelona, Spain
  • Myrhaug D., Holmeda l L.E., 2011. Drag force on a vegetation field due to longcrested and short-crested nonlinear random waves. Coastal Engineering, 58, 562-566.
  • Narayan S., Beck M.W., Reguero B. G., Losada I. J., van Wesenbeeck B., Pontee N., Sanchirico J. N., Ingram J. C., Lange G. M., Burks-Copes K. A.. 2016. The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences. PLoS ONE 11(5), e0154735.
  • Niță V., Micu D, Nenciu M., 2014. First attempt of transplanting the key-species Cystoseira barbata and Zostera noltei at the Romanian coast. Cercetări Marine, 44, 147-163.
  • Ondiviela B., Losada I.J., Lara J.L., Maza M., Galván C., Bouma T.J., van Belzen J., 2014. The role of seagrasses in coastal protection in a changing climate. Coastal Engineering, 87, 157-168.
  • Onea F., Rusu L., 2017. A long-term assessment of the Black Sea wave climate. Sustainability, 9(10), 1875.
  • Pontee N.I., Narayan S., Beck M., Hosking A.H., 2016. Building with nature: Lessons from around the world. Maritime Engineering, 169, 1, 29-36.
  • Short F.T., Carruthers T.J.R., Waycott M., Kendrick G.A., Fourqurean J.W., Callabine A., Kenworthy W.J., Dennison W.C., 2010. Zostera noltei. The IUCN Red List of Threatened Species 2010: e.T173361A6999224.
  • Sierra J.P., García-León M., Gràcia V., Sánchez-Arcilla A., 2017. Green measures for Mediterranean harbours under a changing climate. Proceedings of the Institution of Civil Engineers - Maritime Engineering, 170(2), 55-66.
  • Surugiu V., 2008. On the Occurrence of Zostera noltei Hornemann at the Romanian Coast of the Black Sea. Analele ştiinţifice ale Universităţii "Al. I. Cuza" Iaşi, LIV, fasc. 2, s.II a. Biologie vegetală, 2008.
  • Suzuki T., Zijlema M., Burger B., Narayan S., 2012. Wave dissipation by vegetation with layer schematization in SWAN. Coastal Engineering, 59, 64-71.
  • The SWAN Team, 2018. Scientific and technical documentation. SWAN Cycle III version 41.20A. Delft University of Technology.