Published December 24, 2018 | Version v0.2
Dataset Open

Soil pH in H2O at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution

  • 1. Envirometrix Ltd

Description

Soil pH in H2O in × 10 at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution. Processing steps are described in detail here. Antarctica is not included.

To access and visualize maps use:  OpenLandMap.org

If you discover a bug, artifact or inconsistency in the maps, or if you have a question please use some of the following channels:

All files internally compressed using "COMPRESS=DEFLATE" creation option in GDAL. File naming convention:

  • sol = theme: soil,
  • ph.h2o = variable: soil pH in H2O,
  • usda.4c1a2a = determination method: laboratory method code,
  • m = mean value,
  • 250m = spatial resolution / block support: 250 m,
  • b10..10cm = vertical reference: 10 cm depth below surface,
  • 1950..2017 = time reference: period 1950-2017,
  • v0.2 = version number: 0.2,

Files

sol_ph.h2o_usda.4c1a2a_m.png

Files (21.9 GB)

Name Size Download all
md5:0cb2a79a8d4d8154d7ff97f17730190a
943.1 kB Preview Download
md5:dbd92eb1baf2f9437bfea52cf12d662b
4.6 kB Download
md5:c4315549f2abdcacd8f58c775de52088
2.0 GB Preview Download
md5:5cfcc364a0fb534ca069ebae34c39930
2.0 GB Preview Download
md5:a4330afba9eef3e25eac7888232726a5
2.0 GB Preview Download
md5:ebca5a6e722c8cf2dbd32df2dc2c35a8
2.0 GB Preview Download
md5:3af38affbb6d6cb99e03473f1d396e2a
2.0 GB Preview Download
md5:6ee046a27415861cfd04872b16da45fd
2.0 GB Preview Download
md5:f100f046954d5bf12db3f9e75ca7d91d
1.6 GB Preview Download
md5:ec69ee94fd3f8068d33a1465d0aa2747
1.6 GB Preview Download
md5:b613d38ca4c08fb102dd2926746d3cc9
1.7 GB Preview Download
md5:bf3a001af33abfc82de73668d275239f
1.7 GB Preview Download
md5:bf64106253be13a98592af2e923fa6b5
1.6 GB Preview Download
md5:338a8156a82849494141b643531f73b2
1.6 GB Preview Download

Additional details

References

  • USDA-NRCS, (2014) Laboratory Methods Manual (SSIR 42). U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center.
  • Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, et al. (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748.
  • Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.