Published December 24, 2018
| Version v0.2
Dataset
Open
Sand content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution
Description
Sand content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution. Based on machine learning predictions from global compilation of soil profiles and samples. Processing steps are described in detail here. Antarctica is not included.
To access and visualize maps use: OpenLandMap.org
If you discover a bug, artifact or inconsistency in the maps, or if you have a question please use some of the following channels:
- Technical issues and questions about the code: https://gitlab.com/openlandmap/global-layers/issues
- General questions and comments: https://disqus.com/home/forums/landgis/
All files internally compressed using "COMPRESS=DEFLATE" creation option in GDAL. File naming convention:
- sol = theme: soil,
- sand.wfraction = variable: sand weight fraction,
- usda.3a1a1a = determination method: laboratory method code,
- m = mean value,
- 250m = spatial resolution / block support: 250 m,
- b10..10cm = vertical reference: 10 cm depth below surface,
- 1950..2017 = time reference: period 1950-2017,
- v0.2 = version number: 0.2,
Files
landGIS_sand_content.jpg
Files
(28.6 GB)
Name | Size | Download all |
---|---|---|
md5:3d24f9804228a0f16273df42b70f0c1b
|
549.8 kB | Preview Download |
md5:0f26102541827e1254aef18d3dbe96b1
|
4.7 kB | Download |
md5:2e00065c107b4ccb3064ebde255c18b2
|
2.4 GB | Preview Download |
md5:a4e1ac95fc9b29bf583f9bfa44a8ea1c
|
2.4 GB | Preview Download |
md5:0bee5356b759cf6e86dbdc2e79e04495
|
2.4 GB | Preview Download |
md5:dad8455a1e709a9189768efaf1cfb8aa
|
2.3 GB | Preview Download |
md5:bc64bb07c6d78baef39bdce190a92df0
|
2.4 GB | Preview Download |
md5:9d9bdeaf1c7ffaa4e216c7c9e63cff3d
|
2.4 GB | Preview Download |
md5:e6d80225df680fe62a1a921b11d6e942
|
2.4 GB | Preview Download |
md5:4f36c173ffe22c3447f3d9a9393eb4a7
|
2.4 GB | Preview Download |
md5:53416b9cc7a6daeb0f69dd503f862f51
|
2.4 GB | Preview Download |
md5:d9bd3a14e2110faa45eb75bef3583682
|
2.4 GB | Preview Download |
md5:f6aa4b32bce377a32a27cc6d455ed7e3
|
2.4 GB | Preview Download |
md5:506bc2e7fd108a4edf0879147d9b9a70
|
2.4 GB | Preview Download |
Additional details
References
- USDA-NRCS, (2014) Laboratory Methods Manual (SSIR 42). U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center.
- Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, et al. (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748.
- Hengl, T., MacMillan, R.A., (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, Wageningen, the Netherlands, 370 pages, www.soilmapper.org, ISBN: 978-0-359-30635-0.