Published December 18, 2018 | Version v1
Other Open

CobWeb 1.0: Machine Learning Tool Box for Tomographic Imaging

  • 1. Institute for Geosciences, Johannes Gutenberg-University, Mainz 55099, Germany
  • 2. igem – Institute for Geothermal Resource Management, Berlinstr. 107a, Bingen 55411, Germany
  • 3. Federal Institute for Geosciences and Natural Resources (BGR), Hannover 30655, Germany
  • 4. APS Antriebs-, Prüf- und Steuertechnik GmbH, Götzenbreite 12, Göttingen-Rosdorf 37124, Germany
  • 5. Institute of Applied Geosciences, University of Technology, Darmstadt 64287, Germany

Description

CobWeb toolbox is build for automated image segmentation of X-ray computed tomographic images of geo-materials and thereafter calculation of geometrical parameters such as porosity, pore size distribution and volume fraction.

CobWeb uses unsupervised and supervised machine learning techniques for image segmentation and different image filteration techniques for image prepocessing and noise reduction. For more details please refer to the papers below.

Chauhan, S., Rühaak, W., Khan, F., Enzmann, F., Mielke, P., Kersten, M., Sass, I.: Processing of rock core microtomography images: Using seven different machine learning algorithms, Computers & Geosciences, 86, 120-128, 2016a.

Chauhan, S., Rühaak, W., Anbergen, H., Kabdenov, A., Freise, M., Wille, T., Sass, I.“Phase Segmentation of X-Ray Computer Tomography Rock Images using Machine Learning Techniques: an Accuracy and Performance Study. ” Solid Earth Discuss., se-2016-44, 2016b.

 

 

Files

filedimension.txt

Files (771.1 MB)

Name Size Download all
md5:fa5954e9e19d5b7994ca4d991c3281cf
34.5 MB Download
md5:273982eac88dbb66106ff119fbf31c9c
42.0 MB Download
md5:ca0d6aab65b291d57c67355c1f6b56e4
66 Bytes Preview Download
md5:aba0f789009627fbaeb45fca1432f30b
4.7 kB Download
md5:09193dc7279f1d6d0be80d796969f386
3.1 kB Preview Download
md5:9f52f8d3c8ac16365ec8f1e92a297ea2
102 Bytes Download
md5:0f63464f0e6c97528797a2f93fde3007
817 Bytes Preview Download
md5:1757eaa251b74a33646862c7b9b9c4c8
1.4 kB Preview Download
md5:36557060de9f39b915a93772d181f927
12 Bytes Preview Download
md5:67fbb7d0f607df24ae5f64b49a9b1e86
6.9 kB Download
md5:05b8903429f841eef013539c95444344
84.2 kB Preview Download
md5:b21cac7a97cef5c3f1d4d8d95ef3aad0
8.5 MB Preview Download
md5:0a668a9d8e6bd0186637e39d1c2934a9
686.0 MB Download

Additional details

References

  • Chauhan, S., Rühaak, W., Khan, F., Enzmann, F., Mielke, P., Kersten, M., Sass, I.: Processing of rock core microtomography images: Using seven different machine learning algorithms, Computers & Geosciences, 86, 120-128, 2016a.
  • Chauhan, S., Rühaak, W., Anbergen, H., Kabdenov, A., Freise, M., Wille, T., Sass, I."Phase Segmentation of X-Ray Computer Tomography Rock Images using Machine Learning Techniques: an Accuracy and Performance Study. " Solid Earth Discuss., se-2016-44, 2016b