Journal article Open Access

What p -hacking really looks like: A comment on Masicampo and LaLande (2012)

Lakens, Daniël

Masicampo and Lalande (2012; M&L) assessed the distribution of 3627 exactly calculated p-values between 0.01 and 0.10 from 12 issues of three journals. The authors concluded that "The number of p-values in the psychology literature that barely meet the criterion for statistical significance (i.e., that fall just below .05) is unusually large". "Specifically, the number of p-values between .045 and .050 was higher than that predicted based on the overall distribution of p." There are four factors that determine the distribution of p-values, namely the number of studies examining true effect and false effects, the power of the studies that examine true effects, the frequency of Type 1 error rates (and how they were inflated), and publication bias. Due to publication bias, we should expect a substantial drop in the frequency with which p-values above .05 appear in the literature. True effects yield a right-skewed p-curve (the higher the power, the steeper the curve, e.g., Sellke, Bayarri, & Berger, 2001). When the null-hypothesis is true the p-curve is uniformly distributed, but when the Type 1 error rate is inflated due to flexibility in the data-analysis, the p-curve could become left-skewed below pvalues of .05. M&L (and others, e.g., Leggett, Thomas, Loetscher, & Nicholls, 2013) model pvalues based on a single exponential curve estimation procedure that provides the best fit of p-values between .01 and .10 (see Figure 3, right pane). This is not a valid approach because p-values above and below p=.05 do not lie on a continuous curve due to publication bias. It is therefore not surprising, nor indicative of a prevalence of p-values just below .05, that their single curve doesn't fit the data very well, nor that Chi-squared tests show the residuals (especially those just below .05) are not randomly distributed.

Files (185.9 kB)
Name Size
185.9 kB Download
Views 227
Downloads 112
Data volume 20.8 MB
Unique views 223
Unique downloads 107


Cite as