Published October 15, 2025 | Version v1
Journal article Open

The first mitogenomes of the subfamily Epipleminae (Lepidoptera, Uraniidae) and phylogenetic analysis of Macroheterocera

  • 1. Guizhou University of Traditional Chinese Medicine, Guiyang, China

Description

The subfamily Epipleminae, the largest group within Uraniidae (Lepidoptera, Macroheterocera, Geometroidea), comprises small, nocturnal moths primarily distributed in tropical regions. Taxonomic and molecular phylogenetic studies of Epipleminae have long been challenging, and this group remains genetically understudied, with no mitochondrial genomes (mitogenomes) reported to date, despite their wide utility in phylogenetic research. Here, we sequenced, assembled, and annotated the first complete mitogenomes of four epiplemine species: Dysaethria flavistriga (15,404 bp), Monobolodes prunaria (15,258 bp), Phazaca alikangensis (15,482 bp), and Warreniplema fumicosta (15,467 bp), using high-throughput sequencing technology. These mitogenomes exhibit typical gene arrangement of ditrysian Lepidoptera, along with distinctive features such as rare (TA)n microsatellite repeats in the 16S rRNA. Most protein-coding genes (PCGs) initiate with standard ATN start codons and terminate with TAA or a single T residue. Codon usage analysis revealed UUA (Leu2), AUU (Ile), UUU (Phe), AUA (Met), and AAU (Asn) as the five most frequently used codons. All tRNAs display canonical cloverleaf secondary structures, except for trnS1, which lacks the DHU arm. Comprehensive phylogenetic analyses that incorporated existing macroheteroceran mitogenomic data provided robust support for the placement of Epipleminae under Uraniidae, offered the first mitogenome-based evidence supporting the monophyly of Geometroidea on family level, and strongly supported a sister relationship between Geometroidea and Noctuoidea.

Files

ZK_article_164711.pdf

Files (996.9 kB)

Name Size Download all
md5:5399f9469fcf64000b3469e39fd667e9
996.9 kB Preview Download

System files (224.3 kB)

Name Size Download all
md5:c7ac396e77d8028b55d32fadc17fca5b
224.3 kB Download

Linked records

Additional details

References

  • Al Arab M, zu Siederdissen CH, Tout K, Sahyoun AH, Stadler PF, Bernt M (2017) Accurate annotation of protein-coding genes in mitochondrial genomes. Molecular Phylogenetics and Evolution 106: 209–216. https://doi.org/10.1016/j.ympev.2016.09.024
  • Bazinet, Cummings MP, Mitter KT, Mitter CW (2013) Can RNA-Seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLoS ONE 8(12): e82615. https://doi.org/10.1371/journal.pone.0082615
  • Benson G (1999) Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research 27(2): 573–580. https://doi.org/10.1093/nar/27.2.573
  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Research 27(8): 1767–1780. https://doi.org/10.1093/nar/27.8.1767
  • Cameron SL (2014) Insect mitochondrial genomics: Implications for evolution and phylogeny. Annual Review of Entomology 59(1): 95–117. https://doi.org/10.1146/annurev-ento-011613-162007
  • Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du YS, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang ZD, Yu N, Gutell RR (2002) The Comparative RNA Web (CRW) Site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3(1): 1–2. https://doi.org/10.1186/1471-2105-3-2
  • Cao YQ, Ma C, Chen JY, Yang DR (2012) The complete mitochondrial genomes of two ghost moths, Thitarodes renzhiensis and Thitarodes yunnanensis: The ancestral gene arrangement in Lepidoptera. BMC Genomics 13(1): e276. https://doi.org/10.1186/1471-2164-13-276
  • Capella-Gutiérrez S, Silla-Martínez J, Gabaldón T (2009) TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15): 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  • Chen SF, Zhou YQ, Chen YR, Gu J (2018) Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17): i884–i890. https://doi.org/10.1093/bioinformatics/bty560
  • Chen Q, Chen L, Liao CQ, Wang X, Wang M, Huang GH (2022) Comparative mitochondrial genome analysis and phylogenetic relationship among Lepidopteran species. Gene 830: e146516. https://doi.org/10.1016/j.gene.2022.146516
  • Cheng ML, Liu Y, Zheng XF, Zhang RS, Feng KZ, Yue BS, Du C, Zhou C (2022) Characterization of seventeen complete mitochondrial genomes: Structural features and phylogenetic implications of the lepidopteran insects. Insects 13(11): e998. https://doi.org/10.3390/insects13110998
  • Choi SW, Shin B, Lee JY, Kim SS (2024) A new record of Epipleminae (Lepidoptera, Uraniidae) from Korea. Animal Systematics, Evolution and Diversity 40: 112–114. https://doi.org/10.5635/ASED.2024.40.1.025
  • Clayton DA (1992) Transcription and replication of animal mitochondrial DNAs. International Review of Cytology 141: 217–232. https://doi.org/10.1016/S0074-7696(08)62067-7
  • Curole JP, Kocher TD (1999) Mitogenomics: Digging deeper with complete mitochondrial genomes. Trends in Ecology & Evolution 14(10): 394–398. https://doi.org/10.1016/S0169-5347(99)01660-2
  • Donath A, Jühling F, Al Arab M, Bernhart SH, Reinhardt F, Stadler PF, Middendorf M, Bernt M (2019) Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Research 47(20): 10543–10552. https://doi.org/10.1093/nar/gkz833
  • Gong YJ, Shi BC, Kang ZJ, Zhang F, Wei SJ (2012) The complete mitochondrial genome of the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Molecular Biology Reports 39(3): 2893–2900. https://doi.org/10.1007/s11033-011-1049-y
  • Hampson GF (1892) The Fauna of British India, Including Ceylon and Burma. Moths (Vol. I). Taylor and Francis Ltd., London, 527 pp.
  • Heikkilä M, Mutanen M, Wahlberg N, Sihvonen P, Kaila L (2015) Elusive Ditrysian phylogeny: An account of combining systematized morphology with molecular data (Lepidoptera). BMC Evolutionary Biology 15(1): е260. https://doi.org/10.1186/s12862-015-0520-0
  • Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35(2): 518–522. https://doi.org/10.1093/molbev/msx281
  • Holloway JD (1998) The moths of Borneo, part 8: Families Castniidae, Callidulidae, Drepanidae and Uraniidae. Malayan Nature Journal 52: 1–155.
  • Hurst LD (2002) The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends in Genetics: TIG 18(9): 486–487. https://doi.org/10.1016/S0168-9525(02)02722-1
  • Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285
  • Katoh KK, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/mst010
  • Kawahara AY, Breinholt JW (2014) Phylogenomics provides strong evidence for relationships of butterflies and moths. Proceedings. Biological Sciences 281(1788): е20140970. https://doi.org/10.1098/rspb.2014.0970
  • Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EFA, Donath A, Gimnich F, Frandsen PB, Zwick A, dos Reis M, Barber JR, Peters RS, Liu SL, Zhou X, Mayer C, Podsiadlowski L, Storer C, Yack JE, Misof B, Breinholt JW (2019) Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences of the United States of America 116(45): 22657–22663. https://doi.org/10.1073/pnas.1907847116
  • Kück P, Meid SA, Groß C, Wägele JW, Misof B (2014) AliGROOVE – visualization of heterogeneous sequence divergence within multiple sequence alignments and detection of inflated branch support. BMC Bioinformatics 15(1): е294. https://doi.org/10.1186/1471-2105-15-294
  • Lartillot N, Rodrigue N, Stubbs D, Richer J (2013) PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Systematic Biology 62(4): 611–615. https://doi.org/10.1093/sysbio/syt022
  • Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11): 1451–1452. https://doi.org/10.1093/bioinformatics/btp187
  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW – a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research 41(W1): W575–W581. https://doi.org/10.1093/nar/gkt289
  • Mayer C, Dietz L, Call E, Kukowka S, Martin S, Espeland M (2021) Adding leaves to the Lepidoptera tree: Capturing hundreds of nuclear genes from old museum specimens. Systematic Entomology 46(3): 649–671. https://doi.org/10.1111/syen.12481
  • Meng GL, Li YY, Yang CT, Liu SL (2019) MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research 47(11): e63. https://doi.org/10.1093/nar/gkz173
  • Minet J (1983) Étude morphologique et phylogénétique des organes tympaniques des Pyraloidea. 1 – généralités et homologies. (Lep. Glossata). Annales de la Société Entomologique de France (N.S. ) 19: 175–207. https://doi.org/10.1080/21686351.1983.12278357
  • Minet J (1986) Ebauche d'une classification moderne de l'ordre des Lépidoptères. Alexanor 14: 291–313.
  • Minet J, Scoble MJ (1998) The Drepanoid/Geometrioid assemblage. In: Kükenthal W (Ed.) Teilband/Part 35 (Vol. 1): Evolution, systematics, and biogeography. De Gruyter, Berlin, Boston, 301–320. https://doi.org/10.1515/9783110804744.301
  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(5): 1530–1534. https://doi.org/10.1093/molbev/msaa015
  • Mitter C, Davis DR, Cummings MP (2017) Phylogeny and evolution of Lepidoptera. Annual Review of Entomology 62(1): 265–283. https://doi.org/10.1146/annurev-ento-031616-035125
  • Murillo-Ramos L, Brehm G, Sihvonen P, Hausmann A, Holm S, Reza Ghanavi H, Õunap E, Truuverk A, Staude H, Friedrich E, Tammaru T, Wahlberg N (2019) A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies. PeerJ 7: e7386. https://doi.org/10.7717/peerj.7386
  • Mutanen M, Wahlberg N, Kaila L (2010) Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proceedings. Biological Sciences 277(1695): 2839–2848. https://doi.org/10.1098/rspb.2010.0392
  • Park JS, Kim MJ, Jeong SY, Kim SS, Kim I (2016) Complete mitochondrial genomes of two gelechioids, Mesophleps albilinella and Dichomeris ustalella (Lepidoptera: Gelechiidae), with a description of gene rearrangement in Lepidoptera. Current Genetics 62(4): 809–826. https://doi.org/10.1007/s00294-016-0585-3
  • Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution 41(3): 353–358. https://doi.org/10.1007/BF01215182
  • Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A (2020) Using SPAdes de novo assembler. Current Protocols in Bioinformatics 70(1): e102. https://doi.org/10.1002/cpbi.102
  • Rajaei H, Greve C, Letsch H, Stüning D, Wahlberg N, Minet J, Misof B (2015) Advances in Geometroidea phylogeny, with characterization of a new family based on Pseudobiston pinratanai (Lepidoptera, Glossata). Zoologica Scripta 44(4): 418–436. https://doi.org/10.1111/zsc.12108
  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5): 901–904. https://doi.org/10.1093/sysbio/syy032
  • Regier JC, Zwick A, Cummings MP, Kawahara AY, Cho S, Weller S, Roe A, Baixeras J, Brown JW, Parr C, Davis DR, Epstein M, Hallwachs W, Hausmann A, Janzen DH, Kitching IJ, Solis MA, Yen SH, Bazin et al., Mitter C (2009) Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): An initial molecular study. BMC Evolutionary Biology 9(1): е280. https://doi.org/10.1186/1471-2148-9-280
  • Regier JC, Mitter C, Zwick A, Bazin et al., Cummings MP, Kawahara AY, Sohn JC, Zwickl DJ, Cho S, Davis DR, Baixeras J, Brown J, Parr C, Weller S, Lees DC, Mitter KT (2013) A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS ONE 8(3): e58568. https://doi.org/10.1371/journal.pone.0058568
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Rota J, Twort V, Chiocchio A, Peña C, Wheat CW, Kaila L, Wahlberg N (2022) The unresolved phylogenomic tree of butterflies and moths (Lepidoptera): Assessing the potential causes and consequences. Systematic Entomology 47(4): 531–550. https://doi.org/10.1111/syen.12545
  • Scoble MJ (1992) The Lepidoptera: Form, Function and Diversity. Oxford University Press, Oxford, 404 pp.
  • Sick H (1937) Die tympanalorgane der Uraniden und Epiplemiden. Zoologische Jahrbücher (Anatomie) 63: 351–398.
  • Smetacek P (2005) The Epipleminae (Lepidoptera: Uraniidae) of the Kumaon Himalaya. Journal of the Bombay Natural History Society 102: 186–194.
  • Sohn JC, Yen SH (2005) A taxonomic revision of the Korean Epipleminae (Lepidoptera: Uraniidae), with phylogenetic comments on the involved genera. Zoological Studies 44: 44–70.
  • Song L, Shi YX, Zhang HF, Wang ZB, Liu XM, Yang MS (2021) Complete mitochondrial genome of the hemp borer, Grapholita delineana (Lepidoptera: Tortricidae): Gene variability and phylogeny among Grapholita. Journal of Asia-Pacific Entomology 24(2): 250–258. https://doi.org/10.1016/j.aspen.2021.02.002
  • Sweeney BA, Hoksza D, Nawrocki EP, Eduardo Ribas C, Madeira F, Cannone JJ, Gutell R, Maddala A, Meade CD, Dean Williams L, Petrov AS, Chan PP, Lowe TM, Finn RD, Petrov AI (2021) R2DT is a framework for predicting and visualizing RNA secondary structure using templates. Nature Communications 12(1): e3494. https://doi.org/10.1038/s41467-021-23555-5
  • Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120
  • Timmermans MJTN, Lees DC, Simonsen TJ (2014) Towards a mitogenomic phylogeny of Lepidoptera. Molecular Phylogenetics and Evolution 79: 169–178. https://doi.org/10.1016/j.ympev.2014.05.031
  • van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J, Mitter C, Mutanen M, Regier JC, Simonsen TJ, Wahlberg N, Yen SH, Zahiri R, Adamski D, Baixeras J, Bartsch D, Bengtsson BÅ, Brown JW, Bucheli SR, Davis DR, De Prins J, De Prins W, Epstein ME, Gentili-Poole P, Gielis C, Hättenschwiler P, Hausmann A, Holloway JD, Kallies A, Karsholt O, Kawahara AY, Koster S, Kozlov MV, Lafontaine JD, Lamas G, Landry JF, Lee S, Nuss M, Park KT, Penz C, Rota J, Schintlmeister A, Schmidt BC, Sohn JC, Solis MA, Tarmann GM, Warren AD, Weller S, Yakovlev RV, Zolotuhin VV, Zwick A (2011) Order Lepidoptera Linnaeus, 1758. In: Zhang ZQ (Ed.) Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness. Zootaxa 3148: 212–221. https://doi.org/10.11646/zootaxa.3148.1.41
  • Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng QD, Wortman J, Young SK, Earl AM (2014) Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9(11): e112963. https://doi.org/10.1371/journal.pone.0112963
  • Wang HS, Holloway JD, Wahlberg N, Wang M, Nylin S (2019) Molecular phylogenetic and morphological studies on the systematic position of Heracula discivitta reveal a new subfamily of Pseudobistonidae (Lepidoptera: Geometroidea). Systematic Entomology 44(1): 211–225. https://doi.org/10.1111/syen.12326
  • Wolstenholme DR (1992) Animal mitochondrial DNA: Structure and evolution. International Review of Cytology 141: 173–216. https://doi.org/10.1016/S0074-7696(08)62066-5
  • Xiang CY, Gao FL, Jakovlić I, Lei HP, Hu Y, Zhang H, Zou H, Wang GT, Zhang D (2023) Using PhyloSuite for molecular phylogeny and tree‐based analyses. iMeta 2(1): e87. https://doi.org/10.1002/imt2.87
  • Xin ZZ, Yu L, Zhu XY, Wang Y, Zhang HB, Zhang DZ, Zhou CL, Tang BP, Liu QN (2017) Mitochondrial genomes of two Bombycoidea insects and implications for their phylogeny. Scientific Reports 7(1): e6544. https://doi.org/10.1038/s41598-017-06930-5
  • Yang MS, Hu BY, Zhou L, Liu XM, Shi YX, Song L, Wei YS, Cao JF (2019a) First mitochondrial genome from Yponomeutidae (Lepidoptera, Yponomeutoidea) and the phylogenetic analysis for Lepidoptera. ZooKeys 879: 137–156. https://doi.org/10.3897/zookeys.879.35101
  • Yang MS, Song L, Shi YX, Li JH, Zhang YL, Song N (2019b) The first mitochondrial genome of the family Epicopeiidae and higher-level phylogeny of Macroheterocera (Lepidoptera: Ditrysia). International Journal of Biological Macromolecules 136: 123–132. https://doi.org/10.1016/j.ijbiomac.2019.06.051
  • Yang MS, Li JH, Su SL, Zhang HF, Wang ZB, Ding WL, Li LL (2021) The mitochondrial genomes of Tortricidae: Nucleotide composition, gene variation and phylogenetic performance. BMC Genomics 22(1): e755. https://doi.org/10.1186/s12864-021-08041-y
  • Zhang D, Gao FL, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20(1): 348–355. https://doi.org/10.1111/1755-0998.13096
  • Zhang SP, Zhang J, Xu J, Wang QH, Ye Y, Wang G, Zhang HB, Zhang DZ, Tang BP, Liu QN (2023) Complete mitochondrial genome of Parasa sinica: New insights into the phylogeny of Limacodidae. Heliyon 9(11): e21375. https://doi.org/10.1016/j.heliyon.2023.e21375
  • Zheng XF, Zhang RS, Yue BS, Wu YJ, Yang N, Zhou C (2022) Enhanced resolution of evolution and phylogeny of the moths inferred from nineteen mitochondrial genomes. Genes 13(9): e1634. https://doi.org/10.3390/genes13091634