Ponto-Caspian amphipods (Crustacea, Amphipoda) and their microsporidian parasites recently established in Sweden
Creators
- 1. University of Lodz, Łódź, Poland
- 2. County Administrative Board of Stockholm, Stockholm, Sweden
- 3. Swedish University of Agricultural Sciences, Uppsala, Sweden
Description
The invasive amphipods Dikerogammarus villosus, D. haemobaphes and Pontogammarus robustoides, which originate from the Ponto-Caspian region, are amongst Europe's most ecologically disruptive amphipods and have recently been detected in Sweden, marking their northernmost record and indicating a concerning expansion of their range. This study employed DNA barcoding to confirm the species identifications, assess population structure and trace the origins of these recently introduced populations. To improve the detection resolution in the case of D. villosus, we designed specific primers targeting two additional mitochondrial markers at genes ND5 and ATP8, enabling precise identification of the probable source populations, based on known European invasion routes and their phylogeographic structure. Our analysis identified the Western Group of D. villosus as being present in Sweden, with a probable introduction from the large lakes in the foothills of the Alps, possibly via sailing boats that were transported overland. Meanwhile, P. robustoides and D. haemobaphes appear to have invaded from the eastern and southern Baltic regions — including the Baltic States, Vistula Lagoon and Szczecin Lagoon — possibly via ballast water, ship hulls or floating debris. Additionally, we detected microsporidian infections in all three species, identifying Dictyocoela muelleri and D. berillonum as associated parasites. Given the ecological risks posed by these invasive species, coordinated monitoring, particularly along the Baltic coast, is essential for enabling rapid response efforts in the Nordic region.
Files
NB_article_153292.pdf
Files
(7.4 MB)
Name | Size | Download all |
---|---|---|
md5:30cfab09b3edc5bb1433cd517ccb9695
|
7.4 MB | Preview Download |
System files
(320.3 kB)
Name | Size | Download all |
---|---|---|
md5:7a1f57c264af2f466ee51f28422415db
|
320.3 kB | Download |
Linked records
Additional details
References
- Aldridge D (2013) GB non-native organism rapid risk assessment for Dikerogammarus haemobaphes (Eichwald, 1841). https://www.nonnativespecies.org/assets/Uploads/Rapid_RA_Dikerogammarus_haemobaphes.pdf
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Anderson LG, White PC, Stebbing PD, Stentiford GD, Dunn AM (2014) Biosecurity and vector behaviour: Evaluating the potential threat posed by anglers and canoeists as pathways for the spread of invasive non-native species and pathogens. PLoS ONE 9: e92788. https://doi.org/10.1371/journal.pone.0092788
- Anderson LG, Rocliffe S, Haddaway NR, Dunn AM (2015) The role of tourism and recreation in the spread of non-native species: A systematic review and meta-analysis. PLoS ONE 10: e0140833. https://doi.org/10.1371/journal.pone.0140833
- Andres KJ, Lodge DM, Andrés J (2023a) Environmental DNA reveals the genetic diversity and population structure of an invasive species in the Laurentian Great Lakes. Proceedings of the National Academy of Sciences of the United States of America 120: e2307345120. https://doi.org/10.1073/pnas.2307345120
- Andres KJ, Lodge DM, Sethi SA, Andrés J (2023b) Detecting and analysing intraspecific genetic variation with eDNA: From population genetics to species abundance. Molecular Ecology 32: 4118–4132. https://doi.org/10.1111/mec.17031
- Arbačiauskas K, Višinskienė G, Smilgevičienė S, Rakauskas V (2011) Non-indigenous macroinvertebrate species in Lithuanian fresh waters, Part 1: Distributions, dispersal and future. Knowledge and Management of Aquatic Ecosystems 12: 18. https://doi.org/10.1051/kmae/2011075
- Arbačiauskas K, Šidagytė E, Šniaukštaitė V, Lesutienė J (2017) Range expansion of Ponto-Caspian peracaridan Crustaceans in the Baltic Sea basin and its aftermath: Lessons from Lithuania. Aquatic Ecosystem Health & Management 20: 393–401.
- Artfakta Sweden (2025) Artfakta Sweden. https://artfakta.se/ [accessed 12.02.2025]
- Arundell K, Dunn A, Alexander J, Shearman R, Archer N, Ironside JE (2015) Enemy release and genetic founder effects in invasive killer shrimp populations of Great Britain. Biological Invasions 17: 1439–1451. https://doi.org/10.1007/s10530-014-0806-y
- Bacela K, Konopacka A, Grabowski M (2009) Reproductive biology of Dikerogammarus haemobaphes: an invasive gammarid (Crustacea: Amphipoda) colonising running waters in Central Europe. Biological Invasions 11: 2055–2066. https://doi.org/10.1007/s10530-009-9496-2
- Bacela-Spychalska K (2016) Attachment ability of two invasive amphipod species may promote their spread by overland transport. Aquatic Conservation 26: 196–201. https://doi.org/10.1002/aqc.2565
- Bacela-Spychalska K, Van der Velde G (2013) There is more than one 'killer shrimp': Trophic positions and predatory abilities of invasive amphipods of Ponto-Caspian origin. Freshwater Biology 58: 730–741. https://doi.org/10.1111/fwb.12078
- Bacela-Spychalska K, Wattier RA, Genton C, Rigaud T (2012) Microsporidian disease of the invasive amphipod Dikerogammarus villosus and the potential for its transfer to local invertebrate fauna. Biological Invasions 14: 1831–1842. https://doi.org/10.1007/s10530-012-0193-1
- Bacela-Spychalska K, Grabowski M, Rewicz T, Konopacka A, Wattier R (2013) The 'killer shrimp' Dikerogammarus villosus (Crustacea, Amphipoda) invading Alpine lakes: Overland transport by recreational boats and scuba-diving gear as potential entry vectors? Aquatic Conservation 23: 606–618. https://doi.org/10.1002/aqc.2329
- Bacela-Spychalska K, Wróblewski P, Mamos T, Grabowski M, Rigaud T, Wattier R, Rewicz T, Konopacka A, Ovcharenko M (2018) Europe-wide reassessment of Dictyocoela (Microsporidia) infecting native and invasive amphipods (Crustacea): Molecular versus ultrastructural traits. Scientific Reports 8: 8945. https://doi.org/10.1038/s41598-018-26879-3
- Bacela-Spychalska K, Wattier R, Teixeira M, Cordaux R, Quiles A, Grabowski M, Wroblewski P, Ovcharenko M, Grabner D, Weber D (2023) Widespread infection, diversification and old host associations of Nosema Microsporidia in European freshwater gammarids (Amphipoda). PLoS Pathogens 19: e1011560. https://doi.org/10.1371/journal.ppat.1011560
- Baker MD, Vossbrinck CR, Maddox JV, Undeen AH (1994) Phylogenetic Relationships among Vairimorpha and Nosema Species (Microspora) Based on Ribosomal RNA Sequence Data. Journal of Invertebrate Pathology 64: 100–106. https://doi.org/10.1006/jipa.1994.1077
- Baran K, Neumann T (2023) A Comparative Analysis of Seaports in Terms of the Development of Maritime Tourism in the Area of the Baltic Sea. Water (Basel) 15: 3721. https://doi.org/10.3390/w15213721
- Berglund BE (1979) The deglaciation of southern Sweden 13,500–10,000 B.P. Boreas 8: 89–117. https://doi.org/10.1111/j.1502-3885.1979.tb00789.x
- Bij de Vaate A, Jazdzewski K, Ketelaars HAM, Gollasch S, Van der Velde G (2002) Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 59: 1159–1174. https://doi.org/10.1139/f02-098
- Bjelke U (2024) Invasion of alien crustaceans in Lakes Mälaren and Vättern. SLU Species Data Bank reports 33, Uppsala, 8 pp. https://www.slu.se/globalassets/ew/subw/artd/6-publikationer/43-.-kraftdjur/klar_invasion_frammande_kraftdjur.pdf
- Bjelke U, Tomasson L (2023) New invasive species discovered in Lake Vättern. https://www.havochvatten.se/arkiv/aktuellt/2023-03-08-ny-invasiv-art-upptackt-i-vattern.html [accessed 08.03.2023]
- Blackman RC, Constable D, Hahn C, Sheard AM, Durkota J, Hänfling B, Handley LL (2017) Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples—First record of Gammarus fossarum in the UK. Aquatic Invasions 12(2): 177–189. https://doi.org/10.3391/ai.2017.12.2.06
- Bojko J, Ovcharenko M (2019) Pathogens and other symbionts of the Amphipoda: Taxonomic diversity and pathological significance. Diseases of Aquatic Organisms 136: 3–36. https://doi.org/10.3354/dao03321
- Bojko J, Dunn AM, Stebbing PD, Ross SH, Kerr RC, Stentiford GD (2015) Cucumispora ornata n. sp. (Fungi: Microsporidia) infecting invasive 'demon shrimp' (Dikerogammarus haemobaphes) in the United Kingdom. Journal of Invertebrate Pathology 128: 22–30. https://doi.org/10.1016/j.jip.2015.04.005
- Bojko J, Stentiford GD, Stebbing PD, Hassall C, Deacon A, Cargill B, Pile B, Dunn AM (2019) Pathogens of Dikerogammarus haemobaphes regulate host activity and survival, but also threaten native amphipod populations in the UK. Diseases of Aquatic Organisms 136: 63–78. https://doi.org/10.3354/dao03195
- Bojko J, Burgess AL, Baker AG, Orr CH (2021) Invasive Non-Native Crustacean Symbionts: Diversity and Impact. Journal of Invertebrate Pathology 186: 107482. https://doi.org/10.1016/j.jip.2020.107482
- Bojko J, Reinke AW, Stentiford GD, Williams B, Rogers MS, Bass D (2022) Microsporidia: A new taxonomic, evolutionary, and ecological synthesis. Trends in Parasitology 38: 642–659. https://doi.org/10.1016/j.pt.2022.05.007
- Bommerlund J, Baars J-R, Schrøder-Nielsen A, Brys R, Mauvisseau C, de Boer HJ, Mauvisseau Q (2023) eDNA-based detection as an early warning tool for detecting established and emerging invasive amphipods. Management of Biological Invasions : International Journal of Applied Research on Biological Invasions 14: 321–333. https://doi.org/10.3391/mbi.2023.14.2.09
- Brauer CJ, Sandoval-Castillo J, Gates K, Hammer MP, Unmack PJ, Bernatchez L, Beheregaray LB (2023) Natural hybridisation reduces vulnerability to climate change. Nature Climate Change 13: 282–289. https://doi.org/10.1038/s41558-022-01585-1
- Briski E, Ghabooli S, Bailey SA, MacIsaac HJ (2012) Invasion risk posed by macroinvertebrates transported in ships' ballast tanks. Biological Invasions 14: 1843–1850. https://doi.org/10.1007/s10530-012-0194-0
- Burgess A, Bojko J (2022) Microsporidia are coming: Cucumispora ornata and Dictyocoela berillonum invade Northern Britain. BioInvasions Records 11: 401–408. https://doi.org/10.3391/bir.2022.11.2.13
- Cairns A, Yan N (2009) A review of the influence of low ambient calcium concentrations on freshwater daphniids, gammarids, and crayfish. Environmental Reviews 17: 67–79. https://doi.org/10.1139/a09-005
- Carpio AJ, De Miguel R, Oteros J, Hillström L, Tortosa FS (2019) Angling as a source of non-native freshwater fish: A European review. Biological Invasions 21: 3233–3248. https://doi.org/10.1007/s10530-019-02042-5
- Constable D, Birkby NJ (2016) The impact of the invasive amphipod Dikerogammarus haemobaphes on leaf litter processing in UK rivers. Aquatic Ecology 50: 273–281. https://doi.org/10.1007/s10452-016-9574-3
- Copilaş-Ciocianu D, Šidagytė-Copilas E (2022) A substantial range expansion of alien Ponto-Caspian amphipods along the eastern Baltic Sea coast. Oceanologia 64: 227–232. https://doi.org/10.1016/j.oceano.2021.09.005
- Copilaș-Ciocianu D, Sidorov D (2022) Taxonomic, ecological and morphological diversity of Ponto-Caspian gammaroidean amphipods: A review. Organisms, Diversity & Evolution 22: 285–315. https://doi.org/10.1007/s13127-021-00536-6
- Copilaş-Ciocianu D, Rewicz T, Sands AF, Palatov D, Marin I, Arbačiauskas K, Hebert PD, Grabowski M, Audzijonyte A (2022) A DNA barcode reference library for endemic Ponto-Caspian amphipods. Scientific Reports 12: 11332. https://doi.org/10.1038/s41598-022-15442-w
- Copilaș-Ciocianu D, Sidorov D, Šidagytė-Copilas E (2023a) Global distribution and diversity of alien Ponto-Caspian amphipods. Biological Invasions 25: 179–195. https://doi.org/10.1007/s10530-022-02908-1
- Copilaş-Ciocianu D, Šidagytė-Copilas E, Son MO, Morhun H, Macher JN, Arbačiauskas K (2023b) Genetic diversity of Ponto-Caspian amphipods throughout the invaded Baltic and native NW Black Sea donor ranges: Does introduction mode matter? Hydrobiologia 850: 3061–3076. https://doi.org/10.1007/s10750-023-05230-6
- Crall AW, Jordan R, Holfelder K, Newman GJ, Graham J, Waller DM (2013) The impacts of an invasive species citizen science training program on participant attitudes, behavior, and science literacy. Public Understanding of Science (Bristol, England) 22: 745–764. https://doi.org/10.1177/0963662511434894
- Cristescu ME, Hebert PD (2005) The "Crustacean Seas" an evolutionary perspective on the Ponto-Caspian peracarids. Canadian Journal of Fisheries and Aquatic Sciences 62: 505–517. https://doi.org/10.1139/f04-210
- Cristescu MEA, Hebert PDN, Onciu TM (2003) Phylogeography of Ponto-Caspian crustaceans: A benthic–planktonic comparison. Molecular Ecology 12: 985–996. https://doi.org/10.1046/j.1365-294X.2003.01801.x
- Csabai Z, Borza P, Rewicz T, Pernecker B, Berta BJ, Móra A (2020) Mass appearance of the Ponto-Caspian invader Pontogammarus robustoides in the River Tisza catchment: Bypass in the southern invasion corridor? Knowledge and Management of Aquatic Ecosystems 9: 7. https://doi.org/10.1051/kmae/2020003
- Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T (2020) ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Molecular Biology and Evolution 37: 291–294. https://doi.org/10.1093/molbev/msz189
- Dick JTA, Alexander ME, MacNeil C (2013) Natural born killers: An invasive amphipod is predatory throughout its life-history. Biological Invasions 15: 309–313. https://doi.org/10.1007/s10530-012-0287-9
- Dobrzycka-Krahel A, Graca B (2014) Laboratory study of the effect of salinity and ionic composition of water on the mortality and osmoregulation of the gammarid amphipod Dikerogammarus haemobaphes (Eichwald, 1841): Implications for understanding its invasive distribution pattern. Marine and Freshwater Behaviour and Physiology 47: 227–238. https://doi.org/10.1080/10236244.2014.932141
- Dobrzycka-Krahel A, Majkowski W, Melzer M (2016) Length-weight relationships of Ponto-Caspian gammarids that have overcome the salinity barrier of the southern Baltic Sea coastal waters. Marine and Freshwater Behaviour and Physiology 49: 407–413. https://doi.org/10.1080/10236244.2016.1244948
- Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny ML (2006) Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81: 163–182. https://doi.org/10.1017/S1464793105006950
- Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340
- Emde S, Rueckert S, Palm HW, Klimpel S (2012) Invasive Ponto-Caspian amphipods and fish increase the distribution range of the acanthocephalan Pomphorhynchus tereticollis in the river Rhine. PLoS ONE 7: e53218. https://doi.org/10.1371/journal.pone.0053218
- Etxabe AG, Short S, Flood T, Johns T, Ford AT (2015) Pronounced and prevalent intersexuality does not impede the 'Demon Shrimp'invasion. PeerJ 3: e757. https://doi.org/10.7717/peerj.757
- European Environmental Agency (2018) European waters, Assessment of status and pressures 2018State of Water Report 7/2018: 1–90. https://www.eea.europa.eu/publications/state-of-water
- Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
- Facon B, Jarne P, Pointier JP, David P (2005) Hybridisation and invasiveness in the freshwater snail Melanoides tuberculata: Hybrid vigour is more important than increase in genetic variance. Journal of Evolutionary Biology 18: 524–535. https://doi.org/10.1111/j.1420-9101.2005.00887.x
- Gasiunas I (1972) Obogoschenie kormovoj bazy ryb vodoemov Litvy akklimatizirovannymi rakoobraznymi Kaspijskogo kompleksa.(Enrichment of fodder basis of water bodies of Lithuania by acclimatised crustaceans-like organisms from the Caspian Sea complex. Voprosy razvedenija ryb I rakoobraznykh v vodoemakh Litvy (On the breeding of fish and crustacean-like organisms in the water bodies of Lithuania), 57–68. [In Russian]
- Gatehouse HS, Malone LA (1998) The Ribosomal RNA Gene Region ofNosema apis(Microspora): DNA Sequence for Small and Large Subunit rRNA Genes and Evidence of a Large Tandem Repeat Unit Size. Journal of Invertebrate Pathology 71: 97–105. https://doi.org/10.1006/jipa.1997.4737
- Gherardi F (2007) Biological invaders in inland waters: profiles, distribution, and threats. Vol. 2, Springer Science & Business Media, 734 pp. https://doi.org/10.1007/978-1-4020-6029-8
- Grabner DS, Weigand AM, Leese F, Winking C, Hering D, Tollrian R, Sures B (2015) Invaders, natives and their enemies: Distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasites & Vectors 8: 419. https://doi.org/10.1186/s13071-015-1036-6
- Grabowski M, Jażdżewski K, Konopacka A (2007) Alien crustacea in Polish waters–Amphipoda. Aquatic Invasions 2: 25–38. https://doi.org/10.3391/ai.2007.2.1.3
- Hadwen WL, Boon PI, Arthington AH (2012) Aquatic ecosystems in inland Australia: Tourism and recreational significance, ecological impacts and imperatives for management. Marine and Freshwater Research 63: 325–340. https://doi.org/10.1071/MF11198
- Hall CM, Härkönen T (2006) Lake tourism: An integrated approach to lacustrine tourism systems. Vol. 32, Channel view publications, 235 pp. https://doi.org/10.21832/9781845410421
- Harrison PA, Vandewalle M, Sykes MT, Berry PM, Bugter R, De Bello F, Feld CK, Grandin U, Harrington R, Haslett JR (2010) Identifying and prioritising services in European terrestrial and freshwater ecosystems. Biodiversity and Conservation 19: 2791–2821. https://doi.org/10.1007/s10531-010-9789-x
- Haubrock PJ, Soto I, Ahmed DA, Ansari AR, Tarkan AS, Kurtul I, Macêdo RL, Lázaro-Lobo A, Toutain M, Parker B, Błońska D, Guareschi S, Cano-Barbacil C, Dominguez Almela V, Andreou D, Moyano J, Akalın S, Kaya C, Bayçelebi E, Yoğurtçuoğlu B, Briski E, Aksu S, Emiroğlu Ö, Mammola S, De Santis V, Kourantidou M, Pincheira-Donoso D, Britton JR, Kouba A, Dolan EJ, Kirichenko NI, García-Berthou E, Renault D, Fernandez RD, Yapıcı S, Giannetto D, Nuñez MA, Hudgins EJ, Pergl J, Milardi M, Musolin DL, Cuthbert RN (2024) Biological invasions are a population-level rather than a species-level phenomenon. Global Change Biology 30: e17312. https://doi.org/10.1111/gcb.17312
- Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B, Biological Sciences 270: 313–321. https://doi.org/10.1098/rspb.2002.2218
- Henriksen A, Brit Lisa S, Jaakko M, Wilander A, Ron H, Curtis C, Jensen JP, Erik F, Tatyana M (1998) Northern European Lake Survey, 1995: Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales. Ambio 27: 80–91. https://www.jstor.org/stable/4314692
- Hogg JC, Ironside JE, Sharpe RG, Hatcher MJ, Smith JE, Dunn AM (2002) Infection of Gammarus duebeni populations by two vertically transmitted microsporidia; parasite detection and discrimination by PCR–RFLP. Parasitology 125: 59–63. https://doi.org/10.1017/S0031182002001774
- Hou Z, Sket B, Fišer C, Li S (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences of the United States of America 108: 14533–14538. https://doi.org/10.1073/pnas.1104636108
- Hou Z, Sket B, Li S (2014) Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics 30: 352–365. https://doi.org/10.1111/cla.12055
- Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) 17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
- Hupało K, Riss HW, Grabowski M, Thiel J, Bącela-Spychalska K, Meyer EI (2018) Climate change as a possible driver of invasion and differential in HSP70 expression in two genetically distinct populations of the invasive killer shrimp, Dikerogammarus villosus. Biological Invasions 20: 2047–2059. https://doi.org/10.1007/s10530-018-1679-2
- Jaspers C, Bezio N, Hinrichsen H-H (2021) Diversity and physiological tolerance of native and invasive jellyfish/ctenophores along the extreme salinity gradient of the Baltic Sea. Diversity 13: 57. https://doi.org/10.3390/d13020057
- Jażdżewska AM, Rewicz T, Mamos T, Wattier R, Bącela-Spychalska K, Grabowski M (2020) Cryptic diversity and mtDNA phylogeography of the invasive demon shrimp, Dikerogammarus haemobaphes (Eichwald, 1841), in Europe. NeoBiota 57: 53–86. https://doi.org/10.3897/neobiota.57.46699
- Jażdżewski K (1980) Range extensions of some gammaridean species in European inland waters caused by human activity. Crustaceana (Supplement 6): 84–107. https://www.jstor.org/stable/25027516
- Jazdzewski K, Konopacka A, Grabowski M (2004) Recent drastic changes in the gammarid fauna (Crustacea, Amphipoda) of the Vistula River deltaic system in Poland caused by alien invaders. Diversity & Distributions 10: 81–87. https://doi.org/10.1111/j.1366-9516.2004.00062.x
- Jermacz Ł, Podwysocki K, Desiderato A, Bącela-Spychalska K, Rewicz T, Szczerkowska E, Augustyniak M, Gjoni V, Kobak J (2025) The same species, not the same invader: Metabolic responses of genetically distinct invasive populations of Dikerogammarus villosus (Sowinsky, 1894) and their intraspecific hybrid to environmental stresses. Journal of Animal Ecology 94: 1665–1679. https://doi.org/10.1111/1365-2656.70072
- Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
- Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: An integrated and extendable desktop software platform for the organisation and analysis of sequence data. Bioinformatics (Oxford, England) 28: 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
- Keller RP, Zu Ermgassen PS, Aldridge DC (2009) Vectors and timing of freshwater invasions in Great Britain. Conservation Biology 23: 1526–1534. https://doi.org/10.1111/j.1523-1739.2009.01249.x
- Kobak J, Rachalewski M, Bącela-Spychalska K (2021) What doesn't kill you doesn't make you stronger: Parasites modify interference competition between two invasive amphipods. NeoBiota 69: 51–74. https://doi.org/10.3897/neobiota.69.73734
- Kulmuni J, Wiley B, Otto SP (2024) On the fast track: Hybrids adapt more rapidly than parental populations in a novel environment. Evolution Letters 8: 128–136. https://doi.org/10.1093/evlett/qrad002
- Lacoursière-Roussel A, Bock DG, Cristescu ME, Guichard F, McKindsey CW (2016) Effect of shipping traffic on biofouling invasion success at population and community levels. Biological Invasions 18: 3681–3695. https://doi.org/10.1007/s10530-016-1258-3
- Larson ER, Graham BM, Achury R, Coon JJ, Daniels MK, Gambrell DK, Jonasen KL, King GD, LaRacuente N, Perrin‐Stowe TI (2020) From eDNA to citizen science: Emerging tools for the early detection of invasive species. Frontiers in Ecology and the Environment 18: 194–202. https://doi.org/10.1002/fee.2162
- Leigh JW, Bryant D (2015) POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116. https://doi.org/10.1111/2041-210X.12410
- Leppänen JJ, Kotta J, Daneliya M, Salo E (2017) First record of Chelicorophium curvispinum (GO Sars, 1895) from Lake Mälaren, SE Sweden. BioInvasions Records 6: 345–349. https://doi.org/10.3391/bir.2017.6.4.07
- Leuven RSEW, van der Velde G, Baijens I, Snijders J, van der Zwart C, Lenders HJR, de Vaate AB (2009) The river Rhine: A global highway for dispersal of aquatic invasive species. Biological Invasions 11: 1989–2008. https://doi.org/10.1007/s10530-009-9491-7
- Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics (Oxford, England) 25: 1451–1452. https://doi.org/10.1093/bioinformatics/btp187
- Liebuvienė J, Čižiūnienė K (2021) Comparative Analysis of Ports on the Eastern Baltic Sea Coast. Logistics (Basel) 6: 1. https://doi.org/10.3390/logistics6010001
- Lovy J, Kostka M, Dyková I, Arsenault G, Pecková H, Wright GM, Speare DJ (2009) Phylogeny and morphology of Glugea hertwigi from rainbow smelt Osmerus mordax found in Prince Edward Island, Canada. Diseases of Aquatic Organisms 86: 235–243. https://doi.org/10.3354/dao02133
- Macher J-N, Šidagytė-Copilas E, Copilaș-Ciocianu D (2023) Comparative mitogenomics of native European and alien Ponto-Caspian amphipods. NeoBiota 87: 27–44. https://doi.org/10.3897/neobiota.87.105941
- MacNeil C, Platvoet D, Dick JT, Fielding N, Constable A, Hall N, Aldridge D, Renals T, Diamond M (2010) The Ponto-Caspian'killer shrimp', Dikerogammarus villosus(Sowinsky, 1894), invades the British Isles. Aquatic Invasions 5: 441–445. https://doi.org/10.3391/ai.2010.5.4.15
- Mamos T, Grabowski M, Rewicz T, Bojko J, Strapagiel D, Burzyński A (2021) Mitochondrial genomes, phylogenetic associations, and SNP recovery for the key invasive Ponto-Caspian amphipods in Europe. International Journal of Molecular Sciences 22: 10300. https://doi.org/10.3390/ijms221910300
- Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O (2016) Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications 7(1): 1–11. https://doi.org/10.1038/ncomms13603
- Meßner U, Zettler ML (2018) The conquest (and avoidance?) of the brackish environment by Ponto-Caspian amphipods: A case study of the German Baltic Sea. BioInvasions Records 7: 269–278. https://doi.org/10.3391/bir.2018.7.3.07
- Meßner U, Zettler ML (2021) Drastic changes of the amphipod fauna in northern Germany and the displacement of Gammarus lacustris GO Sars, 1864 to relict habitats/status. Knowledge and Management of Aquatic Ecosystems 422: 17. https://doi.org/10.1051/kmae/2021016
- Moedt S, van Haaren T (2018) Pontogammarus robustoides (Sars, 1894), a new non-indigenous amphipod in the Netherlands (Crustacea: Amphipoda). Lauterbornia 85: 123–126.
- Morhun H, Copilas-Ciocianu D, Rewicz T, Son MO, Khomenko A, Huseynov M, Utevsky S, Grabowski M (2022) Molecular markers and SEM imaging reveal pseudocryptic diversity within the Ponto-Caspian low-profile amphipod invader Dikerogammarus bispinosus. The European Zoological Journal 89: 94–108. https://doi.org/10.1080/24750263.2021.2018056
- Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York Chichester, West Sussex, 514 pp. https://doi.org/10.7312/nei-92038
- Nilsen F, Endresen C, Hordvik I (1998) Molecular Phylogeny of Microsporidians with Particular Reference to Species that Infect the Muscles of Fish. The Journal of Eukaryotic Microbiology 45: 535–543. https://doi.org/10.1111/j.1550-7408.1998.tb05113.x
- Nobanis (2024) Regional portal on invasive alien species. https://www.nobanis.org/ [accessed 12.02.2025]
- Ovcharenko M, Bacela K, Wilkinson T, Ironside JE, Rigaud T, Wattier RA (2010) Cucumispora dikerogammari n. gen.(Fungi: Microsporidia) infecting the invasive amphipod Dikerogammarus villosus: a potential emerging disease in European rivers. Parasitology 137: 191–204. https://doi.org/10.1017/S0031182009991119
- Park E, Jorge F, Poulin R (2020) Shared geographic histories and dispersal contribute to congruent phylogenies between amphipods and their microsporidian parasites at regional and global scales. Molecular Ecology 29: 3330–3345. https://doi.org/10.1111/mec.15562
- Peoples BK, Goforth RR (2017) The indirect role of species-level factors in biological invasions. Global Ecology and Biogeography 26: 524–532. https://doi.org/10.1111/geb.12567
- Phillips BL, Kelehear C, Pizzatto L, Brown GP, Barton D, Shine R (2010) Parasites and pathogens lag behind their host during periods of host range advance. Ecology 91: 872–881. https://doi.org/10.1890/09-0530.1
- Phillips TB, Bailey RL, Martin V, Faulkner-Grant H, Bonter DN (2021) The role of citizen science in management of invasive avian species: What people think, know, and do. Journal of Environmental Management 280: 111709. https://doi.org/10.1016/j.jenvman.2020.111709
- Pinseel E, Nakov T, Van den Berge K, Downey KM, Judy KJ, Kourtchenko O, Kremp A, Ruck EC, Sjöqvist C, Töpel M (2022) Strain-specific transcriptional responses overshadow salinity effects in a marine diatom sampled along the Baltic Sea salinity cline. The ISME Journal 16: 1776–1787. https://doi.org/10.1038/s41396-022-01230-x
- Piscart C, Bergerot B, Laffaille P, Marmonier P (2010) Are amphipod invaders a threat to regional biodiversity? Biological Invasions 12: 853–863. https://doi.org/10.1007/s10530-009-9506-4
- Podwysocki K, Desiderato A, Mamos T, Rewicz T, Grabowski M, Konopacka A, Bącela-Spychalska K (2024) Recent invasion of Ponto-Caspian amphipods in the Masurian Lakeland associated with human leisure activities. NeoBiota 90: 161–192. https://doi.org/10.3897/neobiota.90.109221
- Podwysocki K, Szczerkowska-Majchrzak E, Jermacz Ł, Kobak J, Bącela-Spychalska K, Rewicz T, Desiderato A (2025a) Predation or omnivory – two different feeding patterns displayed by two intraspecific groups of the invasive Ponto-Caspian amphipod - Dikerogammarus villosus. Freshwater Biology 70: e70021. https://doi.org/10.1111/fwb.70021
- Podwysocki K, Bącela-Spychalska K, Desiderato A, Rewicz T, Copilaş-Ciocianu D (2025b) Environment, intraspecific lineages and geographic range jointly shape the high morphological variability of Dikerogammarus villosus (Sowinsky, 1894)(Crustacea, Amphipoda): a successful aquatic invader across Europe. Hydrobiologia: 852: 2081–2099. https://doi.org/10.1007/s10750-024-05565-8
- Podwysocki K, Desiderato A, Szczerkowska-Majchrzak E, Jermacz Ł, Kobak J, Bącela-Spychalska K, Rewicz T (in press) Dispersal potential of freshwater invasive amphipods is population-dependent: A case study of Dikerogammarus villosus. Animal Behaviour.
- Prenter J, MacNeil C, Dick JT, Dunn AM (2004) Roles of parasites in animal invasions. Trends in Ecology & Evolution 19: 385–390. https://doi.org/10.1016/j.tree.2004.05.002
- Quiles A, Wattier RA, Bacela-Spychalska K, Grabowski M, Rigaud T (2020) Dictyocoela microsporidia diversity and co-diversification with their host, a gammarid species complex (Crustacea, Amphipoda) with an old history of divergence and high endemic diversity. BMC Evolutionary Biology 20: 149. https://doi.org/10.1186/s12862-020-01719-z
- Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7: 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
- Ratnasingham S, Hebert PDN (2013) A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System. PLoS ONE 8: e66213. https://doi.org/10.1371/journal.pone.0066213
- Rewicz T, Grabowski M, MacNeil C, Bacela-Spychalska K (2014) The profile of a 'perfect' invader – the case of killer shrimp, Dikerogammarus villosus. Aquatic Invasions 9: 267–288. https://doi.org/10.3391/ai.2014.9.3.04
- Rewicz T, Wattier R, Grabowski M, Rigaud T, Bacela-Spychalska K (2015a) Out of the Black Sea: Phylogeography of the invasive killer shrimp Dikerogammarus villosus across Europe. PLoS ONE 10: e0118121. https://doi.org/10.1371/journal.pone.0118121
- Rewicz T, Wattier RA, Rigaud T, Bacela-Spychalska K, Grabowski M (2015b) Isolation and characterisation of 8 microsatellite loci for the "killer shrimp", an invasive Ponto-Caspian amphipod Dikerogammarus villosus (Crustacea: Amphipoda). Molecular Biology Reports 42: 13–17. https://doi.org/10.1007/s11033-014-3742-0
- Rewicz T, Wattier R, Rigaud T, Grabowski M, Mamos T, Bącela-Spychalska K (2017) The killer shrimp, Dikerogammarus villosus, invading European Alpine Lakes: A single main source but independent founder events with an overall loss of genetic diversity. Freshwater Biology 62: 1036–1051. https://doi.org/10.1111/fwb.12923
- Ricciardi A, MacIsaac HJ (2011) Impacts of biological invasions on freshwater ecosystems. Fifty years of invasion ecology: the legacy of Charles Elton 1: 211–224. https://doi.org/10.1002/9781444329988.ch16
- Rigolet C, Dubois SF, Thiébaut E (2014) Benthic control freaks: Effects of the tubiculous amphipod Haploops nirae on the specific diversity and functional structure of benthic communities. Journal of Sea Research 85: 413–427. https://doi.org/10.1016/j.seares.2013.07.013
- Rothlisberger JD, Chadderton WL, McNulty J, Lodge DM (2010) Aquatic invasive species transport via trailered boats: What is being moved, who is moving it, and what can be done. Fisheries (Bethesda, Md. ) 35: 121–132. https://doi.org/10.1577/1548-8446-35.3.121
- Roy‐Dufresne E, Saltré F, Cooke BD, Mellin C, Mutze G, Cox T, Fordham DA (2019) Modeling the distribution of a wide‐ranging invasive species using the sampling efforts of expert and citizen scientists. Ecology and Evolution 9: 11053–11063. https://doi.org/10.1002/ece3.5609
- Rukke NA (2002) Effects of low calcium concentrations on two common freshwater crustaceans, Gammarus lacustris and Astacus astacus. Functional Ecology 16: 357–366. https://doi.org/10.1046/j.1365-2435.2002.00637.x
- Sahlén Zetterberg T, Fölster J (2022) Har kalciumhalterna i svenska sjöar och vattendrag nått kritiskt låga nivåer? Rapport/Sveriges lantbruksuniversitet, Institutionen för vatten och miljö. https://pub.epsilon.slu.se/28573/1/sahlen-zetterberg-t-et-al-20220825.pdf [accessed 12.02.2025]
- Sket B, Hou Z (2018) Family Gammaridae (Crustacea: Amphipoda), mainly its Echinogammarus clade in SW Europe. Further elucidation of its phylogeny and taxonomy. Acta Biologica Slovenica 61: 93–102. https://doi.org/10.14720/abs.61.2.15898
- Slothouber Galbreath JGM, Smith JE, Terry RS, Becnel JJ, Dunn AM (2004) Invasion success of Fibrillanosema crangonycis, n.sp., n.g.: A novel vertically transmitted microsporidian parasite from the invasive amphipod host Crangonyx pseudogracilis. International Journal for Parasitology 34: 235–244. https://doi.org/10.1016/j.ijpara.2003.10.009
- Smith ERC, Bennion H, Sayer CD, Aldridge DC, Owen M (2020) Recreational angling as a pathway for invasive non-native species spread: Awareness of biosecurity and the risk of long distance movement into Great Britain. Biological Invasions 22: 1135–1159. https://doi.org/10.1007/s10530-019-02169-5
- Smith ERC, Heal R, Wood LE (2023) Understanding and improving biosecurity among recreational anglers in Great Britain. Journal of Fish Biology 102: 1177–1190. https://doi.org/10.1111/jfb.15345
- Soto I, Cuthbert RN, Ricciardi A, Ahmed DA, Altermatt F, Schäfer RB, Archambaud-Suard G, Bonada N, Cañedo-Argüelles M, Csabai Z, Datry T, Dick JTA, Floury M, Forio MAE, Forcellini M, Fruget J-F, Goethals P, Haase P, Hudgins EJ, Jones JI, Kouba A, Leitner P, Lizée M-H, Maire A, Murphy JF, Ozolins D, Rasmussen JJ, Schmidt-Kloiber A, Skuja A, Stubbington R, Van der Lee GH, Vannevel R, Várbíró G, Verdonschot RCM, Wiberg-Larsen P, Haubrock PJ, Briski E (2023) The faunal Ponto-Caspianization of central and western European waterways. Biological Invasions 25: 2613–2629. https://doi.org/10.1007/s10530-023-03060-0
- Sousa R, Nogueira JG, Padilha J (2024) Moving from the species to the population level in biological invasions. Global Change Biology 30: e17396. https://doi.org/10.1111/gcb.17396
- Stentiford GD, Dunn AM (2014) Microsporidia in Aquatic Invertebrates. Microsporidia, 579–604. https://doi.org/10.1002/9781118395264.ch23
- Stentiford GD, Ramilo A, Abollo E, Kerr R, Bateman KS, Feist SW, Bass D, Villalba A (2017) Hyperspora aquatica n.gn., n.sp. (Microsporidia), hyperparasitic in Marteilia cochillia (Paramyxida), is closely related to crustacean-infecting microspordian taxa. Parasitology 144: 186–199. https://doi.org/10.1017/S0031182016001633
- Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: Recent progress and future challenges. Journal of the North American Benthological Society 29: 344–358. https://doi.org/10.1899/08-171.1
- Terry RS, Smith JE, Sharpe RG, Rigaud T, Littlewood DTJ, Ironside JE, Rollinson D, Bouchon D, MacNeil C, Dick JTA, Dunn AM (2004) Widespread vertical transmission and associated host sex–ratio distortion within the eukaryotic phylum Microspora. Proceedings of the Royal Society of London. Series B, Biological Sciences 271: 1783–1789. https://doi.org/10.1098/rspb.2004.2793
- Thomas AC, Tank S, Nguyen PL, Ponce J, Sinnesael M, Goldberg CS (2020) A system for rapid eDNA detection of aquatic invasive species. Environmental DNA 2: 261–270. https://doi.org/10.1002/edn3.25
- Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—New capabilities and interfaces. Nucleic Acids Research 40: e115–e115. https://doi.org/10.1093/nar/gks596
- Vaitonis G, Lazauskienė L, Razinkovas A (1990) Izuchenie rezul'tatov ekonomicheskoj effektivnosti i perspektivy akklimatizacii bezpozvonochnyh v vodoemah Pribaltiki (Study of economic efficiency and prospects of acclimatisation of invertebrates in water bodies of the Baltic states). Vilnius.
- Vávra J, Lukeš J (2013) Microsporidia and 'the art of living together'. Advances in Parasitology 82: 253–319. https://doi.org/10.1016/B978-0-12-407706-5.00004-6
- Venohr M, Langhans SD, Peters O, Hölker F, Arlinghaus R, Mitchell L, Wolter C (2018) The underestimated dynamics and impacts of water-based recreational activities on freshwater ecosystems. Environmental Reviews 26: 199–213. https://doi.org/10.1139/er-2017-0024
- Verpoorter C, Kutser T, Tranvik L (2012) Automated mapping of water bodies using Landsat multispectral data. Limnology and Oceanography: Methods 10: 1037–1050. https://doi.org/10.4319/lom.2012.10.1037
- Vossbrinck CR, Baker MD, Didier ES, Debrunner-Vossbrinck BA, Shadduck JA (1993) Ribosomal Dna Sequences of Encephalitozoon Hellem and Encephalitozoon Cuniculi: Species Identification and Phylogenetic Construction. The Journal of Eukaryotic Microbiology 40: 354–362. https://doi.org/10.1111/j.1550-7408.1993.tb04928.x
- Warren DA, Bradbeer SJ, Dunn AM (2021) Superior predatory ability and abundance predicts potential ecological impact towards early-stage anurans by invasive 'Killer Shrimp' (Dikerogammarus villosus). Scientific Reports 11: 4570. https://doi.org/10.1038/s41598-021-82630-5
- Warren DA, Burgess AL, Prati S, Bacela-Spychalska KSJ, Rogers M, Bojko J (2023) Histopathological screening of Pontogammarus robustoides (Amphipoda), an invader on route to the United Kingdom. Journal of Invertebrate Pathology 200: 107970. https://doi.org/10.1016/j.jip.2023.107970
- Wattier RA, Haine ER, Beguet J, Martin G, Bollache L, Musko IB, Platvoet D, Rigaud T (2007) No genetic bottleneck or associated microparasite loss in invasive populations of a freshwater amphipod. Oikos 116: 1941–1953. https://doi.org/10.1111/j.2007.0030-1299.15921.x
- Weiss ML, Zhu X, Cali A, Tanowitz HB, Wittner M (1994) Utility of microsporidian rRNA in diagnosis and phylogeny: A review. Folia Parasitologica 41: 81–90.
- Wilkinson TJ, Rock J, Whiteley NM, Ovcharenko MO, Ironside JE (2011) Genetic diversity of the feminising microsporidian parasite Dictyocoela: New insights into host-specificity, sex and phylogeography. International Journal for Parasitology 41: 959–966. https://doi.org/10.1016/j.ijpara.2011.04.002
- Witt J, Hebert P, Morton W (1997) Echinogammarus ischnus: Another crustacean invader in the Laurentian Great Lakes basin. Canadian Journal of Fisheries and Aquatic Sciences 54: 264–268. https://doi.org/10.1139/f96-292
- Zehmer JK, Mahon SA, Capelli GM (2002) Calcium as a Limiting Factor in the Distribution of the Amphipod Gammarus Pseudolimnaeus. American Midland Naturalist 148: 350–362. https://doi.org/10.1674/0003-0031(2002)148[0350:CAALFI]2.0.CO;2