Published January 2025 | Version v1
Journal article Open

Large Language Models in Power Systems: Enhancing Control and Decision-Making

Description

Abstract: This paper explores the application of Large Language Models (LLMs) in power systems, focusing on their potential to revolutionize control, optimization, and decision-making processes. We present a comprehensive review of current research and applications, highlighting the challenges and opportunities in this emerging field. A practical example is provided, demonstrating the implementation of an LLM agent for power system control using Python. The power system is modeled using Pandapower, while the LLM agent is based on Llama 3, executed through Ollama. Our findings suggest that LLMs can significantly enhance the efficiency and reliability of power system operations, paving the way for more intelligent and adaptive energy management systems.

Originally published in: International Journal of Innovative Solutions in Engineering (IJISE), Vol. 1, No. 1, 2025. Official URL: https://ijise.ba/article/2/

Minor formatting updates are available in the version hosted on the official journal website.

Files

Vol.-1-No.-1-Article-2.pdf

Files (688.8 kB)

Name Size Download all
md5:34ed32b989ba4515fb77a39077ea4a79
688.8 kB Preview Download

Additional details

Related works

Is identical to
Journal article: https://ijise.ba/article/2/ (URL)
Is published in
Journal: 3029-3200 (ISSN)

References

  • S. Azad and M. Nazari-Heris, Eds., Artificial Intelligence in the Operation and Control of Digitalized Power Systems. in Power Systems. Cham: Springer Nature Switzerland, 2024. doi: https://doi.org/10.1007/978-3-031-69358-8.
  • Q. A. Al-Haija, O. Mohamed, and W. A. Elhaija, Advances in AI for Simulation and Optimization of Energy Systems, 1st ed. Boca Raton: CRC Press, 2025. doi: https://doi.org/10.1201/9781003520498.
  • Y. Zhang, "Application of Large Language Models in Power System Operation and Control", JCEIM, vol. 15, no. 3, pp. 79–83, Dec. 2024, doi: https://doi.org/10.54097/sb9qdz28.
  • P. Martra, Large Language Models Projects: Apply and Implement Strategies for Large Language Models. Berkeley, CA: Apress, 2024. doi: https://doi.org/10.1007/979-8-8688-0515-8.
  • K. Satterlee, "Large Language Models May Revolutionize the Electric Energy Sector". Accessed: Jan. 15, 2025. [Online]. Available: https://engineering.tamu.edu/news/2024/06/large-language-models-may-revolutionize-the-electric-energy-sector.html
  • R. Li et al., "LLM-Based Frameworks for Power Engineering from Routine to Novel Tasks", 2024. doi: https://doi.org/10.2139/ssrn.4741095.
  • C. Huang, S. Li, R. Liu, H. Wang, and Y. Chen, "Large Foundation Models for Power Systems", Dec. 12, 2023, arXiv: arXiv:2312.07044. doi: https://doi.org/10.48550/arXiv.2312.07044.
  • L. Thurner et al., "Pandapower—An Open-Source Python Tool for Convenient Modeling, Analysis, and Optimization of Electric Power Systems", IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6510–6521, Nov. 2018, doi: https://doi.org/10.1109/TPWRS.2018.2829021.
  • Meta, "Introducing Meta Llama 3: The most capable openly available LLM to date", ai.meta.com, Apr. 18, 2024. https://ai.meta.com/blog/meta-llama-3/
  • "Ollama". Accessed: Jan. 15, 2025. [Online]. Available: https://ollama.com
  • "Anaconda | The Operating System for AI", Anaconda. Accessed: Jan. 15, 2025. [Online]. Available: https://www.anaconda.com/
  • M. Jia, Z. Cui, and G. Hug, "Enabling Large Language Models to Perform Power System Simulations with Previously Unseen Tools: A Case of Daline", Nov. 19, 2024, arXiv: arXiv:2406.17215. doi: https://doi.org/10.48550/arXiv.2406.17215.
  • K. V. Arnautov and D. A. Akimov, "Application of Large Language Models for Optimization of Electric Power System States", in 2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon), Saint Petersburg, Russian Federation: IEEE, Jan. 2024, pp. 314–317. doi: https://doi.org/10.1109/ElCon61730.2024.10468377.
  • A. Bernadić, G. Kujundžić, and I. Primorac, "Primjena algoritama podržanog učenja u upravljanju elektroenergetskog sustava", 3. Savjetovanje BH CIRED, Mostar, 2022.
  • A. Bernadić, G. Kujundžić, and I. Primorac, "Reinforcement Learning in Power System Control and Optimization", B&H Electrical Engineering, vol. 17, no. 1, pp. 26–34, Jul. 2023, doi: https://doi.org/10.2478/bhee-2023-0004.
  • A. Bernadić, et al. "Primjena podržanog učenja u regulaciji napona EES-a upravljanjem reaktivnih snaga fotonaponskih elektrana" , 4. Savjetovanje BH Cired, Mostar, 2024.
  • "NetworkX — NetworkX documentation". Accessed: Jan. 15, 2025. [Online]. Available: https://networkx.org/
  • Ruan et al., "Applying Large Language Models to Power Systems: Potential Security Threats", IEEE Trans. Smart Grid, vol. 15, no. 3, pp. 3333–3336, May 2024, doi: https://doi.org/10.1109/TSG.2024.3373256.
  • S. Majumder et al., "Exploring the capabilities and limitations of large language models in the electric energy sector", Joule, vol. 8, no. 6, pp. 1544–1549, Jun. 2024, doi: https://doi.org/10.1016/j.joule.2024.05.009.