Published September 1, 2025 | Version v1
Journal article Open

Two new species and one asexual morph record of Paraisaria (Ophiocordycipitaceae, Hypocreales) from China

  • 1. Mae Fah Luang University, Chiang Rai, Thailand|Guizhou Key Laboratory of Agricultural Microbiology, Guizhou Academy of Agricultural Sciences, Guiyang, China|School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
  • 2. Mae Fah Luang University, Chiang Rai, Thailand|King Saud University, Riyadh, Saudi Arabia|Guizhou University, Guiyang, China
  • 3. Mae Fah Luang University, Chiang Rai, Thailand
  • 4. School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China|Guizhou Key Laboratory of Agricultural Microbiology, Guizhou Academy of Agricultural Sciences, Guiyang, China
  • 5. School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
  • 6. Kyung Hee University, Seoul, Republic of Korea|Mae Fah Luang University, Chiang Rai, Thailand
  • 7. Guizhou Key Laboratory of Agricultural Microbiology, Guizhou Academy of Agricultural Sciences, Guiyang, China|School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China

Description

Paraisaria is a genus within Ophiocordycipitaceae, primarily parasitising insect groups such as ants (Hymenoptera), moth larvae (Lepidoptera) and beetle larvae (Coleoptera). The genus is characterised by cylindrical stipes, subglobose to globose fertile heads with immersed perithecia, hyaline, multi-septate ascospores and irregularly branched conidiophores with flask-shaped phialides and cylindrical to fusiform conidia. Paraisaria is globally distributed, primarily inhabiting tropical and subtropical locations; however, it has also demonstrated adaptability to temperate climates. This study introduces two novel species and reports one asexual morph of Paraisaria from China, providing detailed descriptions, illustrations and molecular phylogenetic analyses. Morphological examination reveals clear distinctions between the new species and previously described taxa. Multi-locus phylogenetic analyses (LSU, ITS, SSU, tef-1α, rpb1 and rpb2) corroborate their uniqueness, offering new insights into the diversity and evolutionary dynamics of the genus.

Files

MC_article_156843.pdf

Files (9.7 MB)

Name Size Download all
md5:692b83defdf40fbd684ede4a1ced007c
9.7 MB Preview Download

System files (224.5 kB)

Name Size Download all
md5:685f925c15f5ea40636a0e67093a59b8
224.5 kB Download

Linked records

Additional details

References

  • Ban S, Sakane T, Nakagiri A (2015) Three new species of Ophiocordyceps and overview of anamorph types in the genus and the family Ophiocordyceptaceae. Mycological Progress 14(1): 1–12. https://doi.org/10.1007/s11557-014-1017-8
  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556. https://doi.org/10.1080/00275514.1999.12061051
  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  • Castlebury LA, Rossman AY, Sung GH, Hyten AS, Spatafora JW (2004) Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycological Research 108(8): 864–872. https://doi.org/10.1017/S0953756204000607
  • Doan UV, Mendez Rojas B, Kirby R (2017) Unintentional ingestion of Cordyceps fungus-infected cicada nymphs causing Ibotenic acid poisoning in Southern Vietnam. Clinical Toxicology (Philadelphia, PA) 55(8): 893–896. https://doi.org/10.1080/15563650.2017.1319066
  • Evans HC, Groden E, Bischoff JF (2010) New fungal pathogens of the red ant, Myrmica rubra, from the UK and implications for ant invasions in the USA. Fungal Biology 114: 451–466. https://doi.org/10.1016/i.fnbio.2010.03.007
  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Nucl. Acids. Symp. Ser. 41: 95–98.
  • Hennings P (1904) Fungi amazonici Il. a cl. Ernesto Ule collecti. Hedwigia 43: 246–249.
  • Huang L, Ma Y, Wang Y, Manzilamu Z, Sou F (2019) Research Status and Utilization Progress of Ophiocordyceps gracilis. Acta Edulis Fungi 26(02): 141–150. https://doi.org/10.16488/j.cnki.1005-9873.2019.02.020
  • Hyde KD, Noorabadi MT, Thiyagaraja V, He MQ, Johnston PR, Wijesinghe SN, Armand A, Biketova AY, Chethana KWT, Erdoğdu M, Ge ZW et al. (2024) The 2024 Outline of Fungi and fungus-like taxa. Mycosphere 15(1): 5146–6239. https://doi.org/10.5943/mycosphere/15/1/25
  • Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarathna SC, L J-K, Luangsa-ard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo J-M, Ghobad-Nejhad M, Nilsson H, Pang K-L, Pereira OL, Phillips AJL, Raspé O, Rollins AW, Romero AI, Etayo J, Selçuk F, Stephenson SL, Suetrong S, Taylor JE, Tsui CKM, Vizzini A, Abdel-Wahab MA, Wen T-C, Boonmee S, Dai DQ, Daranagama DA, Dissanayake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardena RS, Li W-J, Perera RH, Phookamsak R, de Silva NI, Thambugala KM, Tian Q, Wijayawardene NN, Zhao R-L, Zhao Q, Kang J-C (2015) The faces of fungi database: Fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74(1): 3–18. https://doi.org/10.1007/s13225-015-0351-8
  • Jayawardena RS, Hyde KD, de Farias ARG, Bhunjun CS, Ferdinandez HS, Manamgoda DS, Udayanga D, Herath IS, Thambugala KM, Manawasinghe IS, Gajanayake AJ, Samarakoon BC, Bundhun D, Gomdola D, Huanraluek N, Sun Y, Tang X, Promputtha I, Thines M (2021) What is a species in fungal plant pathogens? Fungal Diversity 109: 239–266. https://doi.org/10.1007/s13225-021-00484-8
  • Kalyaanamoorthy S, Bui Quang M, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285
  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/mst010
  • Kobayasi Y (1941) The genus Cordyceps and its allies. Science Reports of the Tokyo Bunrika Daigaku. Section B 84: 53–260.
  • Li CR, Ming L, Fan MZ, Li ZZ (2004) Paraisaria gracilioides comb. nov., the anamorph of Cordyceps gracilioides. Mycosystema 23(1): 165–166.
  • Ma Y, Suo FY, Wang AL, Lu S, Ye X, Gong J (2012) Study on antioxidation activity of the broth of different originated Ophiocordyceps gracilis (Grev.) GH Sung, JM Sung, Hywel-Jones & Spatafora in vitro. Chinese Journal of Biochemical Pharmaceutics 6: 028.
  • Maharachchikumbura SSN, Chen Y, Ariyawansa HA, Hyde KD, Haelewaters D, Perera RH, Samarakoon MC, Wanasinghe DN, Bustamante DE, Liu JK, Lawrence DP, Cheewangkoon R, Stadler M (2021) Integrative approaches for species delimitation in Ascomycota. Fungal Diversity 109: 155–179. https://doi.org/10.1007/s13225-021-00486-6
  • Miller RE, Blair PD (2009) Input-output analysis: foundations and extensions. Cambridge University Press. https://doi.org/10.1017/CBO9780511626982
  • Mongkolsamrit S, Noisripoom W, Arnamnart N, Lamlertthon S, Himaman W, Jangsantear P, Samson RA, Luangsa-ard JJ (2019) Resurrection of Paraisaria in the Ophiocordycipitaceae with three new species from Thailand. Mycological Progress 18(9): 1213–1230. https://doi.org/10.1007/s11557-019-01518-x
  • Nylander JAA (2004) MrModeltest v2.2. Program distributed by the author: 2. Evolutionary Biology Centre, Uppsala University 1–2.
  • Quandt CA, Kepler RM, Gams W, Araújo JPM, Ban S, Evans HC, Hughes D, Hywel-Jones N, Li Z, Luangsa-ard JJ, Rehner SA, Sanjuan T, Sato H, Shrestha B, Sung GH, Yao YJ, Zare R, Spatafora JW (2014) Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus 5(1): 14. https://doi.org/10.5598/imafungus.2014.05.01.12
  • Rambaut A (2012) FigTree version 1.4.0. http://tree.bio.ed.ac.uk/software/figtree/ [accessed 5 January 2021]
  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2013) Tracer version 1.6. University of Edinburgh. [Online] http://tree.bio.ed.ac.uk/software/tracer [Accessed on 19.11.2016]
  • Rathnayaka AR, Tennakoon DS, Jones GE, Wanasinghe DN, Bhat DJ, Priyashantha AH, Stephenson SL, Tibpromma S, Karunarathna SC (2025) Significance of precise documentation of hosts and geospatial data of fungal collections, with an emphasis on plant-associated fungi. New Zealand Journal of Botany 63(2–3): 462–489. https://doi.org/10.1080/0028825X.2024.2381734
  • Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98. https://doi.org/10.3852/mycologia.97.1.84
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes version 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  • Samson RA, Brady BL (1983) Paraisaria, a new genus for Isaria dubia, the anamorph of Cordyceps gracilis. Transactions of the British Mycological Society 81(2): 285–290. https://doi.org/10.1016/S0007-1536(83)80081-3
  • Sanjuan TI, Franco-Molano AE, Kepler RM, Spatafora JW, Tabima J, Vasco-Palacios AM, Restrepo S (2015) Five new species of entomopathogenic fungi from the Amazon and evolution of neotropical Ophiocordyceps. Fungal Biology 119(10): 901–916. https://doi.org/10.1016/j.funbio.2015.06.010
  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AN (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109(16): 6241–6246. https://doi.org/10.1073/pnas.1117018109
  • Senanayake I, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, Lee HB, Hurdeal VG, Pem D, Dissanayake LS, Wijesinghe SN, Bundhun D, Nguyen TT, Goonasekara ID, Abeywickrama PD, Bhunjun CS, Jayawardena RS, Wanasinghe DN, Jeewon R, Bhat DJ, Xiang MM (2020) Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11: 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20
  • Stamatakis A (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  • Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57: 5–59. https://doi.org/10.3114/sim.2007.57.01
  • Suo FY, Huang LD, Yu H (2014) Identification and antibacterial effect research of a Tolypocladium strain isolated from sclerotium of Ophiocordyceps gracilis in Xinjiang. China Journal of Chinese Materia Medica 39(6): 965–971.
  • Tehan RM, Dooley CB, Barge EG, McPhail KL, Spatafora JW (2023) New species and new combinations in the genus Paraisaria (Hypocreales, Ophiocordycipitaceae) from the U.S.A., supported by polyphasic analysis. MycoKeys 100: 69–94. https://doi.org/10.3897/mycokeys.100.110959
  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  • Wei DP, Wanasinghe DN, Xu JC, To-Anun C, Mortimer PE, Hyde KD, Elgorban AM, Madawala S, Suwannarach N, Karunarathna SC, Tibpromma S, Lumyong S (2021) Three novel entomopathogenic fungi from China and Thailand. Frontiers in Microbiology 11: 608991. https://doi.org/10.3389/fmicb.2020.608991
  • Wen TC, Xiao YP, Zha LS, Hyde KD, Kang JC (2016) Multigene phylogeny and morphology reveal a new species, Ophiocordyceps tettigonia, from Guizhou Province, China. Phytotaxa 280(9): 141–151. https://doi.org/10.11646/phytotaxa.280.2.4
  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  • Xiao YP, Wang YB, Hyde KD, Eleni G, Sun JZ, Yang Y, Meng J, Yu H, Wen TC (2023) Polycephalomycetaceae, a new family of clavicipitoid fungi segregates from Ophiocordycipitaceae. Fungal Diversity 120(1): 1–76. https://doi.org/10.1007/s13225-023-00517-4
  • Xiao YP, Yang Y, Jayawardena RS, Gentekaki E, Peng XC, Luo ZL, Lu YZ (2024) Four novel Pleurocordyceps (Polycephalomycetaceae) species from China. Frontiers in Microbiology 14: 1256967. https://doi.org/10.3389/fmicb.2023.1256967
  • Yang Y, Xiao YP, Yu GJ, Wen TC, Deng CY, Meng J, Lu ZH (2021) Ophiocordyceps aphrophoridarum sp. nov., a new entomopathogenic species from Guizhou, China. Biodiversity Data Journal 9(e66115): 1–13. https://doi.org/10.3897/BDJ.9.e66115
  • Yang Y, Jayawardena Ruvishika S, Lu YZ, Xie SQ, Tian XG, Wang JP, Zhou SX, Xiao YP (2024) Four new Ophiocordyceps species in China. Mycosystema 43(3): 230–256. https://doi.org/10.13346/j.mycosystema.230256
  • Yuan L, Tong L, Wang Y, Du Y, Liu M, He S, Wei S, Zhang Y, Chen Z, Jin S, Guo D (2022) Enhancing polysaccharide production by Paraisaria dubia spores batch fermentation through a pH-shift strategy based on kinetic analysis. Process Biochemistry 126: 292–298. https://doi.org/10.1016/j.procbio.2022.12.020