Reinstatement of Cyclocarya serrata (Juglandaceae) based on ploidy, morphology, niche and phylogenetics
- 1. Beijing Normal University, Beijing, China
- 2. Beijing Normal University, Beijing, China|Beijing Forestry University, Beijing, China
Description
Pterocarya serrata C.K.Schneid., originally described in 1912, has long been treated as a synonym of Cyclocarya paliurus (Batal.) Iljinsk. in Plants of the World Online (POWO). Based on an integrative framework combining ploidy determination, morphometric analyses, ecological niche comparisons, and molecular phylogenetics of mixed-ploidy populations, together with extensive herbarium and field investigations, we formally reinstate Pterocarya serrata as a distinct species within the genus Cyclocarya, recognizing three synonyms. Our results reveal clear phenotypic divergence and genetic differentiation between C. serrata and C. paliurus, which have evolved into separate evolutionary lineages. These findings refute the traditional treatment of Cyclocarya as a monotypic genus. Furthermore, we present the first comprehensive morphological descriptions, distribution records, and taxonomic notes for both C. serrata and C. paliurus, thereby advancing the systematic understanding of Cyclocarya.
Files
PK_article_155490.pdf
Files
(5.9 MB)
Name | Size | Download all |
---|---|---|
md5:09a02e2f7763438025c29f4c84992abb
|
5.9 MB | Preview Download |
System files
(205.5 kB)
Name | Size | Download all |
---|---|---|
md5:642e2fd24f624b3e6d1666593f8c15d3
|
205.5 kB | Download |
Linked records
Additional details
References
- Azani N, Bruneau A, Wojciechowski MF, Zarre S (2019) Miocene climate change as a driving force for multiple origins of annual species in Astragalus (Fabaceae, Papilionoideae). Molecular Phylogenetics and Evolution 137: 210–221. https://doi.org/10.1016/j.ympev.2019.05.008
- Bartolić P, Morgan EJ, Padilla-García N, Kolář F (2024) Ploidy as a leaky reproductive barrier: Mechanisms, rates and evolutionary significance of interploidy gene flow. Annals of Botany 134: 537–550. https://doi.org/10.1093/aob/mcae096
- Batalin AT (1893) Notae de plantis asiaticis, XIII, Trudy Imperatorskago S.-Peterburgskago botanicheskago sada [= Acta Horti Petropolitani] 7: 101.
- Chansler MT, Ferguson CJ, Fehlberg SD, Prather LA (2016) The role of polyploidy in shaping morphological diversity in natural populations of Phlox amabilis. American Journal of Botany 103: 1546–1558. https://doi.org/10.3732/ajb.1600183
- Cheng H, Liu J, Wen J, Nie XJ, Xu LH, Chen NB, Li ZX, Wang QL, Zheng ZQ, Li M, Cui LC, Liu ZH, Bian JX, Wang ZH, Xu SB, Yang Q, Appels R, Han DJ, Song WN, Sun QX, Jiang Y (2019) Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biology 20: 136–152. https://doi.org/10.1186/s13059-019-1744-x
- Clark LV, Stewart JR, Nishiwaki A, Toma Y, Kjeldsen JB, Jørgensen U, Zhao H, Peng J, Yoo JH, Heo K, Yu CY, Yamada T, Sacks EJ (2015) Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression. Journal of Experimental Botany 66: 4213–4225. https://doi.org/10.1093/jxb/eru511
- Dong XX, Shi L, Bao SQ, Fu H, You YM, Ren Y, Wang JC, Li Q, Chen ZX (2024) Leaf traits of prickly ash and its correlation with ecological and geographical factors of origin. Scientific Reports 14: 6276. https://doi.org/10.1038/s41598-024-56962-x
- Duchoslav M, Jandová M, Kobrlová L, Šafářová L, Brus J, Vojtěchová K (2020) Intricate Distribution Patterns of Six Cytotypes of Allium oleraceum at a Continental Scale: Niche Expansion and Innovation Followed by Niche Contraction With Increasing Ploidy Level. Frontiers in Plant Science 11: 591137. https://doi.org/10.3389/fpls.2020.591137
- Ficetola GF, Stöck M (2015) Do hybrid‐origin polyploid amphibians occupy transgressive or intermediate ecological niches compared to their diploid ancestors? Journal of Biogeography 43: 703–715. https://doi.org/10.1111/jbi.12667
- Francis RM (2017) POPHELPER: An R package and web app to analyse and visualize population structure. Molecular Ecology Resources 17: 27–32. https://doi.org/10.1111/1755-0998.12509
- Fu SX (2001) Cyclocarya. In: Fu SX (Ed.) Flora of Hubei, vol. 1. Hubei Science and Technology Press, Wuhan, 81–82.
- Han X, Li JH, Li G, Zhang ZB, Lian TT, Zhang BQ, Luo T, Lv RL, Cai XJ, Lin XY, Xu CM, Wu Y, Gong L, Wendel JF, Liu B (2025) Rapid formation of stable autotetraploid rice from genome-doubled F1 hybrids of japonica–indica subspecies. Nature Plants 11: 743–760. https://doi.org/10.1038/s41477-025-01966-2
- He L, Guo FY, Cai XJ, Chen HP, Lian CL, Wang Y, Shang C, Zhang Y, Wagner ND, Zhang ZX, Hörandl E, Wang XR (2023) Evolutionary origin and establishment of a dioecious diploid–tetraploid complex. Molecular Ecology 32: 2732–2749. https://doi.org/10.1111/mec.16902
- Hsu PS, Feng XZ, Xu LG (1988) The taxonomic status of Pterocarya micropaliurus Tsoong. Guangxi Zhi Wu 4: 319–323.
- Ilyinskaya IA (1953) Monograph of the genus Pterocarya Kunth. Trudy Botanicheskogo Instituta Akademii Nauk SSSR 10: 7–123.
- Jiang YL, Li JL, Milne RI, Nguyen KS, Han ZT, Huang YS, Xu WB, Liu Y, Mao KS (2024) Biogeographic, climatic, morphological, cytological and molecular data reveal a new diploid species from China in the genus Xanthocyparis (Cupressaceae). Taxon 73: 1170–1186. https://doi.org/10.1002/tax.13246
- Karunarathne P, Schedler M, Martínez EJ, Honfi AI, Novichkova A, Hojsgaard D (2018) Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids. Annals of Botany 121: 1183–1196. https://doi.org/10.1093/aob/mcy004
- Keane JA, Taylor B, Delaney AJ, Seemann T, Harris SR, Page AJ, Soares J (2016) SNP-sites: Rapid efficient extraction of SNPs from multi-FASTA alignments. Microbial Genomics 2: 1–5. https://doi.org/10.1099/mgen.0.000056
- Leal JL, Milesi P, Hodková E, Zhou Q, James J, Eklund DM, Pyhäjärvi T, Salojärvi J, Lascoux M, Mandel J (2024) Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles. Systematic Biology 73: 392–418. https://doi.org/10.1093/sysbio/syae012
- Leal BSS, Ambrosano GB, Margarido GRA, Palma-Silva C, Pinheiro F (2025) Interploidy gene flow does not prevent adaptive genetic differentiation in sympatric populations of Epidendrum fulgens and E. puniceoluteum (Orchidaceae). Botanical Journal of the Linnean Society: boaf015. https://doi.org/10.1093/botlinnean/boaf015
- Liu KM, Wan SB (2000) Juglandaceae. In: Liu KM (Ed.) Flora of Hunan, vol. 2. Hunan Science and Technology Press, Changsha, 78–97.
- Liu WS, Zheng L, Qi DH (2020) Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecology and Evolution 10: 8166–8175. https://doi.org/10.1002/ece3.6519
- Liu XL, Song ZQ, Hu FR, Shang XL (2024) A comparative study on leaf characters between diploid and tetraploid of Cyclocarya paliurus. Journal of Nanjing University 48: 76–84. https://doi.org/10.12302/j.issn.1000-2006.202305024 [Natural Sciences]
- López-Jurado J, Mateos-Naranjo E, Balao F (2019) Niche divergence and limits to expansion in the high polyploid Dianthus broteri complex. The New Phytologist 222: 1076–1087. https://doi.org/10.1111/nph.15663
- Lowry DB, Modliszewski JL, Wright KM, Wu CA, Willis JH (2008) The strength and genetic basis of reproductive isolating barriers in flowering plants. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363: 3009–3021. https://royalsocietypublishing.org/doi/10.1098/rstb.2008.0064
- Lu AM, Stone DE, Grauke LJ (1999) Juglandaceae. In: Wu ZY, Raven PH, Hong DY (Eds) Flora of China, vol. 4. Science Press, Beijing and Missouri Botanical Garden, St. Louis, 277–285.
- Manning WE (1975) An Analysis of the Genus Cyclocarya Iljinskaya (Juglandaceae). Bulletin of the Torrey Botanical Club 102: 157–166. https://doi.org/10.2307/2484936
- Manning WE (1978) The Classification Within the Juglandaceae. Annals of the Missouri Botanical Garden 65: 1058–1087. https://doi.org/10.2307/2666226
- Manos PS, Stone DE (2001) Evolution, Phylogeny, and Systematics of the Juglandaceae. Annals of the Missouri Botanical Garden 88(2): 231–269. https://doi.org/10.2307/2666226
- Matsumoto T, Yasumoto AA, Nitta K, Yahara T, Tachida H (2013) Difference in flowering time as an isolating barrier. Journal of Theoretical Biology 317: 161–167. https://doi.org/10.1016/j.jtbi.2012.10.001
- Meirmans PG (2020) GENODIVE version 3.0: Easy‐to‐use software for the analysis of genetic data of diploids and polyploids. Molecular Ecology Resources 20: 1126–1131. https://doi.org/10.1111/1755-0998.13145
- Paradis E, Schliep K (2019) ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics (Oxford, England) 35: 526–528. https://doi.org/10.1093/bioinformatics/bty633
- POWO (2025) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. https://powo.science.kew.org/
- Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. American Journal of Human Genetics 67: 170–181. https://doi.org/10.1086/302959
- Prusa LA, Hill RI (2021) Umbrella of protection: Spatial and temporal dynamics in a temperate butterfly Batesian mimicry system. Biological Journal of the Linnean Society. Linnean Society of London 133: 685–703. https://doi.org/10.1093/biolinnean/blab004
- Qu YQ, Shang XL, Zeng ZY, Yu YH, Bian GL, Wang WL, Liu L, Li T, Zhang SC, Wang Q, Xie DJ, Chen XQ, Liao ZY, Wang YB, Qin J, Yang WX, Sun CW, Fu XX, Zhang XT, Fang SZ (2023) Whole-genome Duplication Reshaped Adaptive Evolution in A Relict Plant Species, Cyclocarya paliurus. Genomics, Proteomics & Bioinformatics 21: 455–469. https://doi.org/10.1016/j.gpb.2023.02.001
- Ramsey J, Schemske DW (2002) Neopolyploidy in Flowering Plants. Annual Review of Ecology, Evolution, and Systematics 33: 589–639. https://doi.org/10.1146/annurev.ecolsys.33.010802.150437
- Renner SS, Dosmann MS (2025) Lectotypification of Pterocarya serrata C.K.Schneider, the name of a forgotten species of wingnuts. PhytoKeys 260: 269–274. https://doi.org/10.3897/phytokeys.260.158522
- Rose JP, Kriebel R, Sytsma KJ, Drew BT (2024) Phylogenomic perspectives on speciation and reproductive isolation in a North American biodiversity hotspot: an example using California sages (Salvia subgenus Audibertia: Lamiaceae). Annals of Botany 134: 295–310. https://doi.org/10.1093/aob/mcae073
- Schneider CK (1912) Juglans L. In: Schneider CK (Ed.) lllustriertes Handbuch der Laubholzkunde, vol. 2. Gustav Fischer, Jena, 880.
- Scott AD, Kolesnikova U, Glushkevich A, Steinmann L, Tikhomirov N, Pfordt U, Bohutínská M, Burns R, Seregin AP, Kolar F, Schmickl R, Novikova PY (2025) Multiple polyploidizations in Arabidopsis lyrata stabilized by long-range adaptive introgression across Eurasia. Molecular Biology and Evolution 2025: msaf153. https://doi.org/10.1093/molbev/msaf153
- Stift M, Kolář F, Meirmans PG (2019) Structure is more robust than other clustering methods in simulated mixed-ploidy populations. Heredity 123: 429–441. https://doi.org/10.1038/s41437-019-0247-6
- Sun MZ, Pang EL, Bai WN, Zhang DY, Lin K (2022) PLOIDYFROST: Reference‐free estimation of ploidy level from whole genome sequencing data based on de Bruijn graphs. Molecular Ecology Resources 23: 499–510. https://doi.org/10.1111/1755-0998.13720
- Taylor RS, Friesen VL (2017) The role of allochrony in speciation. Molecular Ecology 26: 3330–3342. https://doi.org/10.1111/mec.14126
- Tsoong PC (1936) A list of flowering plants collected from hwangshan in 1935, with a brief account of vegetation by Liou tchen-ngo. Contributions from the Institute of Botany. National Academy of Peiping 4: 134.
- Wang JL (2019) A parsimony estimator of the number of populations from a STRUCTURE-like analysis. Molecular Ecology Resources 19: 970–981. https://doi.org/10.1111/1755-0998.13000
- Wang FH, Li MH, Liu Z, Li W, He Q, Xing LS, Xiao Y, Wang MJ, Wang Y, Du CL, Zhang HY, Zhou Y, Du HL (2025) The mixed auto-/allooctoploid genome of Japanese knotweed (Reynoutria japonica) provides insights into its polyploid origin and invasiveness. The Plant Journal 121: e70005. https://doi.org/10.1111/tpj.70005
- Weiß CL, Pais M, Cano LM, Kamoun S, Burbano HA (2018) nQuire: A statistical framework for ploidy estimation using next generation sequencing. BMC Bioinformatics 19: 122. https://doi.org/10.1186/s12859-018-2128-z
- Wu ZY, Sun H, Zhou ZK, Peng H, Li DZ (2005) Orign and Differentiation of Endemism in the Flora of China. Plant Diversity 27: 577–604. https://journal.kib.ac.cn/CN/Y2005/V27/I06/577
- Xu F, Guo WH, Xu WH, Wei YH, Wang RQ (2009) Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves? Progress in Natural Science 19: 1789–1798. https://doi.org/10.1016/j.pnsc.2009.10.001
- Yu RM, Zhang N, Zhang BW, Liang Y, Pang XX, Cao L, Chen YD, Zhang WP, Yang Y, Zhang DY, Pang EL, Bai WN (2023) Genomic insights into biased allele loss and increased gene numbers after genome duplication in autotetraploid Cyclocarya paliurus. BMC Biology 21: 168. https://doi.org/10.1186/s12915-023-01668-1
- Zhang C, Rabiee M, Sayyari E, Mirarab S (2018) ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19: 153. https://doi.org/10.1186/s12859-018-2129-y