Published August 28, 2025 | Version v1
Journal article Open

Comparison of three strategies for local bioassessments in streams using environmental DNA and RNA metabarcoding of macroinvertebrates

  • 1. University of Duisburg-Essen, Essen, Germany

Description

Environmental DNA (eDNA) metabarcoding of streams can deliver information on biological communities with minimally invasive efforts and at low costs. However, the captured eDNA may not necessarily originate only from organisms physically present at a local site but also come via drift from sources upstream. Therefore, data on community composition can be inherently different to specimens occurring at a certain site, limiting direct comparisons to site-based assessment data. To increase the local signal, two possible ways were recently proposed: First, targeting eRNA collected from water samples, which degrades faster than eDNA, and second, using eDNA from water, in which organisms from the stream were shortly incubated in a water container. Based on these two options, we here derived and tested three strategies to obtain a more localized signal of biodiversity: 1. eRNA metabarcoding of a direct stream water sample, 2. eDNA and eRNA metabarcoding of water, in which animals collected via kicknet multi-habitat sampling were shortly incubated, and 3. eDNA and eRNA metabarcoding of water, in which natural substrate exposures (NSEs) that were actively colonised by invertebrates in the stream for four weeks were shortly incubated. For comparison, we used eDNA directly isolated from the stream as the more regional signal. As the local point-based sample reference, we used the animal bulk sample that was incubated. While our results support that eRNA collected from the stream (strategy 1) does not improve the local signal, both incubation strategies increased the proportion of species identified by both metabarcoding of eDNA/eRNA and the locally collected bulk sample by about 20%. Interestingly, we detected 20% more species in the NSEs (strategy 3) than in the kicknet samples (strategy 2), highlighting the potential of this less invasive invertebrate sampling approach. In summary, our study demonstrates that incubating collected animals in stream water before filtering the water increases the local community signal and provides an animal-friendly strategy for biomonitoring.

Files

MBMG_article_148923.pdf

Files (3.4 MB)

Name Size Download all
md5:e99f2ff5b03d35c30df4bd3029be6d20
3.4 MB Preview Download

System files (206.9 kB)

Name Size Download all
md5:5f15c62ecda6dbb0ccb9fef06e9522f4
206.9 kB Download

Linked records

Additional details

References

  • Andruszkiewicz Allan E, Zhang WG, Lavery AC, Govindarajan AF (2021) Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environmental DNA 3(2): 337–366. https://doi.org/10.1002/edn3.141
  • Buchner D, Leese F (2020) BOLDigger – a Python package to identify and organise sequences with the Barcode of Life Data systems. Metabarcoding and Metagenomics 4: e53535. https://doi.org/10.3897/mbmg.4.53535
  • Buchner D, Beermann AJ, Leese F, Weiss M (2021a) Cooking small and large portions of "biodiversity‐soup": Miniaturized DNA metabarcoding PCRs perform as good as large‐volume PCRs. Ecology and Evolution 11(13): 9092–9099. https://doi.org/10.1002/ece3.7753
  • Buchner D, Haase P, Leese F (2021b) Wet grinding of invertebrate bulk samples – a scalable and cost-efficient protocol for metabarcoding and metagenomics. Metabarcoding and Metagenomics 5: e67533. https://doi.org/10.3897/mbmg.5.67533
  • Buchner D (2022a) Guanidine-based DNA extraction with silica-coated beads or silica spin columns. Protocols.io. https://doi.org/10.17504/Protocols.io.eq2ly73mmlx9/v1
  • Buchner D (2022b) PCR cleanup and size selection with magnetic beads. Protocols.io. https://doi.org/10.17504/Protocols.io.36wgqj45xvk5/v2
  • Buchner D (2022c) PCR normalization and size selection with magnetic beads. Protocols.io. https://doi.org/10.17504/Protocols.io.q26g7y859gwz/v2
  • Buchner D, Macher T-H, Leese F (2022d) APSCALE: Advanced pipeline for simple yet comprehensive analyses of DNA metabarcoding data. Bioinformatics 38(20): 4817–4819. https://doi.org/10.1093/bioinformatics/btac588
  • Buchner D (2023) Co-extraction of RNA and DNA from plant tissue. Protocols.io. https://doi.org/10.17504/Protocols.io.n2bvj8qxngk5/v1
  • Buchner D (2024) Reconditioning PCR for removal of PCR bubbles in Illumina librarys. Protocols.io. https://doi.org/10.17504/Protocols.io.x54v9p9ypg3e/v1
  • Buss DF, Carlisle DM, Chon T-S, Culp J, Harding JS, Keizer-Vlek HE, Robinson WA, Strachan S, Thirion C, Hughes RM (2015) Stream biomonitoring using macroinvertebrates around the globe: A comparison of large-scale programs. Environmental Monitoring and Assessment 187(1): 4132. https://doi.org/10.1007/s10661-014-4132-8
  • Cristescu ME (2019) Can Environmental RNA Revolutionize Biodiversity Science? Trends in Ecology & Evolution 34(8): 694–697. https://doi.org/10.1016/j.tree.2019.05.003
  • Cummins KW (2016) Combining taxonomy and function in the study of stream macroinvertebrates. Journal of Limnology 75(s1). https://doi.org/10.4081/jlimnol.2016.1373
  • Curtis AN, Tiemann JS, Douglass SA, Davis MA, Larson ER (2021) High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Diversity & Distributions 27(10): 1918–1931. https://doi.org/10.1111/ddi.13196
  • Dahm V, Kupilas B, Rolauffs P, Hering D, Haase P, Kappes H, Leps M, Sundermann A, Döbbelt-Grüne S, Hartmann C, Koenzen U, Reuvers C, Zellmer U, Zins C, Wagner F (2014) . Hydromorphologische Steckbriefe der deutschen Fließgewässertypen: 1–288. https://www.umweltbundesamt.de/publikationen/strategien-zur-optimierung-von-fliessgewaessern
  • De Pauw N, Roels D, Fontoura AP (1986) Use of artificial substrates for standardized sampling of macroinvertebrates in the assessment of water quality by the Belgian Biotic Index. Hydrobiologia 133: 237–258. https://doi.org/10.1007/BF00005595
  • Deiner K, Altermatt F (2014) Transport Distance of Invertebrate Environmental DNA in a Natural River. PLoS ONE 9(2): e88786. https://doi.org/10.1371/journal.pone.0088786
  • Deiner K, Fronhofer EA, Mächler E, Walser J-C, Altermatt F (2016) Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nature Communications 7(1): 12544. https://doi.org/10.1038/ncomms12544
  • Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière‐Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, De Vere N, Pfrender ME, Bernatchez L (2017) Environmental DNAmetabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology 26(21): 5872–5895. https://doi.org/10.1111/mec.14350
  • Dejean T, Valentini A, Duparc A, Pellier-Cuit S, Pompanon F, Taberlet P, Miaud C (2011) Persistence of Environmental DNA in Freshwater Ecosystems. PLoS ONE 6(8): e23398. https://doi.org/10.1371/journal.pone.0023398
  • Dijkstra K-DB, Wildermuth H, Martens A (2024) Dataset "Odonata". www.freshwaterecology.info [the taxa and autecology database for freshwater organisms, version 8.0. accessed on 25.10.2024]
  • Dumeier AC, Lorenz AW, Kiel E (2018) How to facilitate freshwater macroinvertebrate reintroduction? Limnologica 69: 24–27. https://doi.org/10.1016/j.limno.2017.11.001
  • Dumeier AC, Lorenz AW, Kiel E (2020) Active reintroduction of benthic invertebrates to increase stream biodiversity. Limnologica 80: 125726. https://doi.org/10.1016/j.limno.2019.125726
  • Eigner J, Boedtker H, Michaels G (1961) The thermal degradation of nucleic acids. BBA 51(1): 165–168. https://doi.org/10.1016/0006-3002(61)91028-9
  • Elbrecht V, Steinke D (2019) Scaling up DNA metabarcoding for freshwater macrozoobenthos monitoring. Freshwater Biology 64: 380–387. https://doi.org/10.1111/fwb.13220
  • Fox J, Weisberg S (2019) An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks. https://www.john-fox.ca/Companion/
  • Gleason JE, Elbrecht V, Braukmann TWA, Hanner RH, Cottenie K (2021) Assessment of stream macroinvertebrate communities with eDNA is not congruent with tissue‐based metabarcoding. Molecular Ecology 30(13): 3239–3251. https://doi.org/10.1111/mec.15597
  • Gorokhova E (2005) Effects of preservation and storage of microcrustaceans in RNA later on RNA and DNA degradation: Storage and preservation effects of RNAlater. Limnology and Oceanography: Methods 3(2): 143–148. https://doi.org/10.4319/lom.2005.3.143
  • Hajibabaei M, Porter TM, Robinson CV, Baird DJ, Shokralla S, Wright MTG (2019) Watered-down biodiversity? A comparison of metabarcoding results from DNA extracted from matched water and bulk tissue biomonitoring samples. PLoS ONE 14(12): e0225409. https://doi.org/10.1371/journal.pone.0225409
  • Hebert PD, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B, Biological Sciences 270(1512): 313–321. https://doi.org/10.1098/rspb.2002.2218
  • Hensel S, Kiel K (2012) Übertragbarkeit des Simulationsgegenstandes "Norddeutscher Tieflandfluss in landwirtschaftlich genutzten Gebieten'' auf Mesokosmen im Hinblick auf Untersuchungen zu Verbleib und Wirkung von Stoffen/Mikroorganismen auf Flora und Fauna. UBA Bericht 10: 1–255.
  • Jo TS (2024) Larger particle size distribution of environmental RNA compared to environmental DNA: A case study targeting the mitochondrial cytochrome b gene in zebrafish (Danio rerio) using experimental aquariums. Naturwissenschaften 111(2): 18. https://doi.org/10.1007/s00114-024-01904-w
  • Jo T, Tsuri K, Hirohara T, Yamanaka H (2023) Warm temperature and alkaline conditions accelerate environmental RNA degradation. Environmental DNA 5(5): 836–848. https://doi.org/10.1002/edn3.334
  • Leese F, Sander M, Buchner D, Elbrecht V, Haase P, Zizka VMA (2021) Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environmental DNA 3(1): 261–276. https://doi.org/10.1002/edn3.177
  • Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proceedings of the National Academy of Sciences of the United States of America 112(7): 2076–2081. https://doi.org/10.1073/pnas.1424997112
  • Li Y, Breaker RR (1999) Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2 '-hydroxyl group. Journal of the American Chemical Society 121(23): 5364–5372. https://doi.org/10.1021/ja990592p
  • Li F, Zhang Y, Altermatt F, Zhang X (2021) Consideration of multitrophic biodiversity and ecosystem functions improves indices on river ecological status. Environmental Science & Technology 55(24): 16434–16444. https://doi.org/10.1021/acs.est.1c05899
  • Littlefair JE, Rennie MD, Cristescu ME (2022) Environmental nucleic acids: A field‐based comparison for monitoring freshwater habitats using eDNA and eRNA. Molecular Ecology Resources 22(8): 2928–2940. https://doi.org/10.1111/1755-0998.13671
  • Logan P, Brooker MP (1983) The macroinvertebrate faunas of riffles and pools. Water Research 17(3): 263–270. https://doi.org/10.1016/0043-1354(83)90179-3
  • Macher J, Vivancos A, Piggott JJ, Centeno FC, Matthaei CD, Leese F (2018) Comparison of environmental DNA and bulk‐sample metabarcoding using highly degenerate cytochrome c oxidase I primers. Molecular Ecology Resources 18(6): 1456–1468. https://doi.org/10.1111/1755-0998.12940
  • Macher T-H, Schütz R, Arle J, Beermann AJ, Koschorreck J, Leese F (2021a) Beyond fish eDNA metabarcoding: Field replicates disproportionately improve the detection of stream associated vertebrate species. Metabarcoding and Metagenomics 5: e66557. https://doi.org/10.3897/mbmg.5.66557
  • Macher T, Beermann AJ, Leese F (2021b) TaxonTableTools: A comprehensive, platform‐independent graphical user interface software to explore and visualise DNA metabarcoding data. Molecular Ecology Resources 21(5): 1705–1714. https://doi.org/10.1111/1755-0998.13358
  • Macher T-H, Arle J, Beermann AJ, Frank L, Hupało K, Koschorreck J, Schütz R, Leese F (2024) Is it worth the extra mile? Comparing environmental DNA and RNA metabarcoding for vertebrate and invertebrate biodiversity surveys in a lowland stream. PeerJ 12: e18016. https://doi.org/10.7717/peerj.18016
  • Mächler E, Little CJ, Wüthrich R, Alther R, Fronhofer EA, Gounand I, Harvey E, Hürlemann S, Walser J, Altermatt F (2019) Assessing different components of diversity across a river network using eDNA. Environmental DNA 1(3): 290–301. https://doi.org/10.1002/edn3.33
  • Marshall NT, Vanderploeg HA, Chaganti SR (2021) Environmental (e)RNA advances the reliability of eDNA by predicting its age. Scientific Reports 11(1): 2769. https://doi.org/10.1038/s41598-021-82205-4
  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal 17(1): 10–12. https://doi.org/10.14806/ej.17.1.200
  • Martinez Arbizu P (2020) pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4.
  • Mauvisseau Q, Harper LR, Sander M, Hanner RH, Kleyer H, Deiner K (2022) The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environmental Science & Technology 56(9): 5322–5333. https://doi.org/10.1021/acs.est.1c07638
  • Meier C, Böhmer J, Biss R, Feld C, Haase P, Lorenz A, Rawer-Jost C, Rolauffs P, Schindehütte K, Schöll F, Sundermann A, Zenker A, Hering D (2006) Weiterentwicklung und Anpassung des nationalen Bewertungssystems für Makrozoobenthos an neue internationale Vorgaben.
  • Mengoni A, Tatti E, Decorosi F, Viti C, Bazzicalupo M, Giovannetti L (2005) Comparison of 16S rRNA and 16S rDNA T-RFLP Approaches to Study Bacterial Communities in Soil Microcosms Treated with Chromate as Perturbing Agent. Microbial Ecology 50(3): 375–384. https://doi.org/10.1007/s00248-004-0222-4
  • Meyer K (2017) . Wiederansiedlung von Makroinvertebraten in Fließgewässern, Master Thesis. Carl von Ossietzky Universität, Oldenburg.
  • Miyata K, Inoue Y, Amano Y, Nishioka T, Yamane M, Kawaguchi T, Morita O, Honda H (2021) Fish environmental RNA enables precise ecological surveys with high positive predictivity. Ecological Indicators 128: 107796. https://doi.org/10.1016/j.ecolind.2021.107796
  • Miyata K, Inoue Y, Amano Y, Nishioka T, Nagaike T, Kawaguchi T, Morita O, Yamane M, Honda H (2022) Comparative environmental RNA and DNA metabarcoding analysis of river algae and arthropods for ecological surveys and water quality assessment. Scientific Reports 12(1): 19828. https://doi.org/10.1038/s41598-022-23888-1
  • Múrria C, Wangensteen OS, Somma S, Väisänen L, Fortuño P, Arnedo MA, Prat N (2024) Taxonomic accuracy and complementarity between bulk and eDNA metabarcoding provides an alternative to morphology for biological assessment of freshwater macroinvertebrates. The Science of the Total Environment 935: 173243. https://doi.org/10.1016/j.scitotenv.2024.173243
  • Nichols PK, Timmers M, Marko PB (2022) Hide 'n seq: Direct versus indirect metabarcoding of coral reef cryptic communities. Environmental DNA 4(1): 93–107. https://doi.org/10.1002/edn3.203
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan
  • Pawlowski J, Kelly-Quinn M, Altermatt F, Apothéloz-Perret-Gentil L, Beja P, Boggero A, Borja A, Bouchez A, Cordier T, Domaizon I, Feio MJ, Filipe AF, Fornaroli R, Graf W, Herder J, Van Der Hoorn B, Jones JI, Sagova-Mareckova M, Moritz C, Barquín J, Piggott JJ, Pinna M, Rimet F, Rinkevich B, Sousa-Santos C, Specchia V, Trobajo R, Vasselon V, Vitecek S, Zimmermann J, Weigand A, Leese F, Kahlert M (2018) The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. The Science of the Total Environment 637–638: 1295–1310. https://doi.org/10.1016/j.scitotenv.2018.05.002
  • Pereira‐da‐Conceicoa L, Elbrecht V, Hall A, Briscoe A, Barber‐James H, Price B (2021) Metabarcoding unsorted kick‐samples facilitates macroinvertebrate‐based biomonitoring with increased taxonomic resolution, while outperforming environmental DNA. Environmental DNA 3(2): 353–371. https://doi.org/10.1002/edn3.116
  • Pikó L, Taylor KD (1987) Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Developmental Biology 123(2): 364–374. https://doi.org/10.1016/0012-1606(87)90395-2
  • Pilliod DS, Goldberg CS, Arkle RS, Waits LP (2014) Factors influencing detection of eDNA from a stream-dwelling amphibian. Molecular Ecology Resources 14(1): 109–116. https://doi.org/10.1111/1755-0998.12159
  • Pochon X, Zaiko A, Fletcher LM, Laroche O, Wood SA (2017) Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12(11): e0187636. https://doi.org/10.1371/journal.pone.0187636
  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  • Ransome E, Geller JB, Timmers M, Leray M, Mahardini A, Sembiring A, Collins AG, Meyer CP (2017) The importance of standardization for biodiversity comparisons: A case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo'orea coral reefs, French Polynesia. PLoS ONE 12(4): e0175066. https://doi.org/10.1371/journal.pone.0175066
  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: A versatile open source tool for metagenomics. PeerJ 4: e2584. https://doi.org/10.7717/peerj.2584
  • Sander M, Beermann AJ, Buchner D, Weiss M, Werner M-T, Leese F (2025) Capture—Incubate—Release: An Animal-Friendly Approach to Assess Local Aquatic Macroinvertebrate Species Diversity Through Environmental DNA Metabarcoding. Environmental DNA 7: e70112. https://doi.org/10.1002/edn3.70112
  • Schmedtje U, Colling M (1996) Ökologische Typisierung der aquatischen Makrofauna. Informationsberichte des Bayerischen Landesamtes fürmWasserwirtschaft 4/96, 543 pp.
  • Schmidt-Kloiber A, Hering D (2015) www.freshwaterecology.info - an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators 53: 271–282. https://doi.org/10.1016/j.ecolind.2015.02.007
  • Schmidt-Kloiber A, Hering D (2024) www.freshwaterecology.info – The Taxa and Autecology Database for Freshwater Organisms, Version 8.0.
  • Scriver M, von Ammon U, Pochon X, Arranz V, Stanton JAL, Gemmell NJ, Zaiko A (2024) Environmental DNA–RNA dynamics provide insights for effective monitoring of marine invasive species. Environmental DNA 6(2): e531. https://doi.org/10.1002/edn3.531
  • Scullion J, Parish CA, Morgan N, Edwards RW (1982) Comparison of benthic macroinvertebrate fauna and substratum composition in riffles and pools in the impounded River Elan and the unregulated River Wye, mid‐Wales. Freshwater Biology 12(6): 579–595. https://doi.org/10.1111/j.1365-2427.1982.tb00650.x
  • Shogren AJ, Tank JL, Andruszkiewicz E, Olds B, Mahon AR, Jerde CL, Bolster D (2017) Controls on eDNA movement in streams: Transport, Retention, and Resuspension. Scientific Reports 7(1): 1. https://doi.org/10.1038/s41598-017-05223-1
  • Shogren AJ, Tank JL, Egan SP, August O, Rosi EJ, Hanrahan BR, Renshaw MA, Gantz CA, Bolster D (2018) Water flow and biofilm cover influence environmental DNA detection in recirculating streams. Environmental Science & Technology 52(15): 8530–8537. https://doi.org/10.1021/acs.est.8b01822
  • Sidova M, Tomankova S, Abaffy P, Kubista M, Sindelka R (2015) Effects of post-mortem and physical degradation on RNA integrity and quality. Biomolecular Detection and Quantification 5: 3–9. https://doi.org/10.1016/j.bdq.2015.08.002
  • Stat M, Huggett MJ, Bernasconi R, DiBattista JD, Berry TE, Newman SJ, Harvey ES, Bunce M (2017) Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment. Scientific Reports 7(1): 12240. https://doi.org/10.1038/s41598-017-12501-5
  • Tachet H, Bournaud M, Richoux P, Usseglio-Polatera P (2010) Invertébrés d'eau douce - systématique, biologie, écologie. CNRS Editions, Paris, 600 pp.
  • Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E (2012a) Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples. PLoS ONE 7(8): e41732. https://doi.org/10.1371/journal.pone.0041732
  • Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E (2012b) Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology 21(11): 2565–2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x
  • Vamos E, Elbrecht V, Leese F (2017) Short COI markers for freshwater macroinvertebrate metabarcoding. Metabarcoding and Metagenomics 1: e14625. https://doi.org/10.3897/mbmg.1.14625
  • Von Ammon U, Wood SA, Laroche O, Zaiko A, Lavery SD, Inglis GJ, Pochon X (2019) Linking Environmental DNA and RNA for Improved Detection of the Marine Invasive Fanworm Sabella spallanzanii. Frontiers in Marine Science 6: 621. https://doi.org/10.3389/fmars.2019.00621
  • Wacker S, Fossøy F, Larsen BM, Brandsegg H, Sivertsgård R, Karlsson S (2019) Downstream transport and seasonal variation in freshwater pearl mussel (Margaritifera margaritifera) eDNA concentration. Environmental DNA 1(1): 64–73. https://doi.org/10.1002/edn3.10
  • Wickham H (2011) Ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics 3(2): 180–185. https://doi.org/10.1002/wics.147
  • Wood SA, Biessy L, Latchford JL, Zaiko A, Von Ammon U, Audrezet F, Cristescu ME, Pochon X (2020) Release and degradation of environmental DNA and RNA in a marine system. The Science of the Total Environment 704: 135314. https://doi.org/10.1016/j.scitotenv.2019.135314
  • Yates MC, Derry AM, Cristescu ME (2021) Environmental RNA: A Revolution in Ecological Resolution? Trends in Ecology & Evolution 36(7): 601–609. https://doi.org/10.1016/j.tree.2021.03.001
  • Zhang Y, Qiu Y, Liu K, Zhong W, Yang J, Altermatt F, Zhang X (2024) Evaluating eDNA and eRNA metabarcoding for aquatic biodiversity assessment: From bacteria to vertebrates. Environmental Science and Ecotechnology 21: 100441. https://doi.org/10.1016/j.ese.2024.100441
  • Zulkefli NS, Kim KH, Hwang SJ (2019) Effects of microbial activity and environmental parameters on the degradation of extracellular environmental DNA from a eutrophic lake. International Journal of Environmental Research and Public Health 16(18): 3339. https://doi.org/10.3390/ijerph16183339