There is a newer version of this record available.

Dataset Open Access

DeepPredSpeech: computational models of predictive speech coding based on deep learning

Hueber, Thomas; Tatulli, Eric; Girin, Laurent; Schwartz, Jean-Luc

This dataset contains all data, source code, pre-trained computational predictive models and experimental results related to:  

Hueber T., Tatulli E., Girin L., Schwatz, J-L "How predictive can be predictions in the neurocognitive processing of auditory and audiovisual speech? A deep learning study." (biorXiv preprint https://doi.org/10.1101/471581). 

  • Raw data are extracted from the publicly available database NTCD-TIMIT (10.5281/zenodo.260228). 
    • Audio recordings are available in the audio_clean/ directory
    • Post-processed lip image sequences are available in the lips_roi/ directory (67x67 pixels, 8bits, obtained by lossless inverse DCT-2D transform from the DCT feature available in the original repository of NTCD-TIMIT)
    • Phonetic segmentation (extracted from NTCD-TIMIT original zenodo repository) is available in the HTK MLF file volunteer_labelfiles.mlf
  • Audio features (MFCC-spectrogram and log-spectrogram) are available in the mfcc_16k/ and fft_16k/ directories. 
  • Models (audio-only, video-only and audiovisual, based on deep feed-forward neural networks and/or convolutional neural network, in .h5 format, trained with Keras 2.0 toolkit) and data normalization parameters (in .dat scikit-learn format) are available in models_mfcc/ and models_logspectro/ directories
  • Predicted and target (ground truth) MFCC-spectro (resp. log-spectro) for the test databases (1909 sentences), and for the different values of \(\tau_p\) or \(\tau_f\) are available in pred_testdb_mfccspectro/ (resp. pred_testdb_logspectro/) directory

Source code for extracting audio features, training and evaluating the models is available on GitHub https://github.com/thueber/DeepPredSpeech/

All directories have been zipped before upload.

Feel free to contact me for more details.

Thomas Hueber, Ph. D., CNRS research fellow, GIPSA-lab, Grenoble, France, thomas.hueber@gipsa-lab.fr 

Files (31.8 GB)
Name Size
audio_clean.zip
md5:95760da33c73583a800a04512add3860
854.4 MB Download
fft_16k.zip
md5:73cd4942408ec21b5d9b1cde001ee8d5
1.1 GB Download
lips_roi.zip
md5:97697d79d3c83ca9b8376f29dafa85c2
2.1 GB Download
mfcc_16k.zip
md5:bd422555e2241b7dda8032410116c743
112.7 MB Download
models_logspectro.zip
md5:fb7c2825fa4e0adb42debc5594460fce
2.7 GB Download
models_mfcc.zip
md5:89b551f3945aac090af4364d7d66c223
429.3 MB Download
pred_testdb_logspectro.zip
md5:726e74a82f13791c4e5a4ebbaf9f3867
18.4 GB Download
pred_testdb_mfcc.zip
md5:85cb6c27733849d71308ef21cd685a93
6.1 GB Download
volunteer_labelfiles.mlf
md5:4f0749a409ec998cc64a7be440de343c
4.3 MB Download
333
337
views
downloads
All versions This version
Views 333176
Downloads 33783
Data volume 2.0 TB303.6 GB
Unique views 277159
Unique downloads 10633

Share

Cite as