biocore/scikit-bio: scikit-bio 0.5.4: faster pcoa through FSVD
Authors/Creators
- Jai Ram Rideout1
- Greg Caporaso
- Evan Bolyen
- Daniel McDonald2
- Yoshiki Vázquez Baeza3
- Jorge Cañardo Alastuey
- Anders Pitman
- Jamie Morton4
- Jose Navas4
- Kestrel Gorlick
- Justine Debelius
- Zech Xu5
- llcooljohn
- adamrp
- Joshua Shorenstein6
- Laurent Luce
- Will Van Treuren
- John Chase
- charudatta-navare
- Colin Brislawn7
- Antonio Gonzalez8
- Weronika Patena9
- Karen Schwarzberg
- teravest
- Jens Reeder
- shiffer1
- nbresnick
- Kevin Murray10
- alexbrc
- Karan Sharma11
- 1. Northern Arizona University
- 2. UCSD - Dept. of Pediatrics
- 3. University of California, San Diego; Knight Laboratory
- 4. University of California, San Diego
- 5. UCSD
- 6. MUSE Biotechnology
- 7. @PNNL
- 8. Knight Lab
- 9. Carnegie Institution for Science
- 10. Australian National University (ANU) (@borevitzlab)
- 11. @zerodhatech
Description
We are very excited to announce scikit-bio 0.5.4. This is a minor release that adds a heuristic-based method to calculate PCoA. For large distance matrices, this option will dramatically reduce the memory footprint and accelerate the compute in skbio.stats.ordination.pcoa.
You can review the CHANGELOG.md for a complete description of the changes in this release. To learn about what you can do with scikit-bio, browse our API documentation.
Be sure to follow @scikitbio on twitter for project updates, and as always, thanks for your interest in scikit-bio!
Files
biocore/scikit-bio-0.5.4.zip
Files
(8.6 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:da57649641a0e08900f9c7aa71684264
|
8.6 MB | Preview Download |
Additional details
Related works
- Is supplement to
- https://github.com/biocore/scikit-bio/tree/0.5.4 (URL)