Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published August 25, 2018 | Version v1
Journal article Open

Neurobiological Aspects of Violent and Criminal Behaviour: Deficits in Frontal Lobe Function and Neurotransmitters

  • 1. CHRIST (Deemed to be University), Bengaluru, India

Contributors

  • 1. Raksha Shakti University

Description

Many neurobiological abnormalities have been reported in patients with violent and criminal behaviour. Strong associations exist between aggressive/violent behaviour and brain dysfunction. Also, many studies support an association between frontal lobe dysfunction and increased aggressive or antisocial behaviour. The focal orbitofrontal brain injury is specifically associated with increased aggression. Deficits in frontal lobe executive functions may increase the likelihood of future aggression, but as of now, studies have reliably demonstrated a characteristic pattern of frontal network dysfunction predictive of violent crime. The evidence is strongest for an association between focal prefrontal damage and an impulsive subtype of aggressive behaviour. This paper covers dysfunctions in these regions contributing to severe aggressive and violent behaviour, as well as neurotransmitters implicated in the same.

Files

ReddyetalVol13Issue1IJCJS.pdf

Files (306.7 kB)

Name Size Download all
md5:746740b61b7fa58e949a959f50092f22
306.7 kB Preview Download

Additional details

Related works

References

  • Aguiar, R. (2013). Aggression post brain injury: a social cognitive perspective. Social Care and Neurodisability, 4(2), 77-85. Badawy, A. (2003). Alcohol and violence and the possible role of serotonin. Criminal behaviour and mental health, 13, 31-44. Bechara, A., Damasio, H., & Damasio, A. (2000). Emotion, Decision Making and the Orbiotofrontal cortex. Cerebral Cortex, 10, 295-307. Blair, R. J. R. (2004). The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain and Cognition, 55(1), 198–208. Blair, R. J. R. (2008). The amygdala and ventromedial prefrontal cortex: functional contributions and dysfunction in psychopathy. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1503), 2557–2565. Brower, M. C., & Price, B. H. (2001). Neuropsychiatry of frontal lobe dysfunction in violent and criminal behavior: a critical review. Journal of Neurology, Neurosurgery & Psychiatry, 71(6), 720-726. Brown, H. R., Salazar, A. M., Grafman, J., Schwab, K., Warden, D., & Pridgen, A. (1996). Frontal lobe injuries, violence, and aggression: A report of the Vietnam Head Injury Study. Campbell, A. (2008). Attachment, aggression and affiliation: The role of oxytocin in female social behavior. Biological Psychology, 77(1), 1–10. Chayer, C., & Freedman, M. (2001). Frontal lobe functions. Current Neurology and Neuroscience Reports, 1(6), 547–552. Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A., & Phan, K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62(2), 168–178. Damasio, A. R. (1994). Descartes' Error Emotion, Reason and the Human Brain. GP Putnam's Sons, New York. Retrieved from https://ahandfulofleaves.files.wordpress.com/2013/07/descartes-error_antonio-damasio.pdf. Davis, K., & Traynoy, E. (2012). Brain Trials: Neuroscience is taking a stand in the courtroom. ABA Journal, 98(11), 36-42. Driver-Dunckley, E., Samanta, J., & Stacy, M. (2003). Pathological gambling associated with dopamine agonist therapy in Parkinson's disease. Neurology, 61(3), 422-423. Elst, V., Tebartz, L., Woermann, F. G., Lemieux, L., Thompson, P. J., & Trimble, M. R. (2000). Affective aggression in patients with temporal lobe epilepsy A quantitative MRI study of the amygdala. Brain, 123(2), 234–243. Foreman, J. (2002). Brain Scans Draw a Dark Image of the Violent Mind, 9. Retrieved from https://search.proquest.com/docview/405446484?accountid=38885. Glenn, A. L., & Raine, A. (2014). Neurocriminology: implications for the punishment, prediction and prevention of criminal behavior. Nature Reviews Neuroscience, 15(1), 54–63. Glenn, A. L., & Raine, A. (2008). "The neurobiology of psychopathy." Psychiatric Clinics of North America, 31(3), 463-475. Glick, A.R. (2015). The role of serotonin in impulsive aggression, suicide and homicide in adolescents and adults: a literature review. Int J Adolesc Med Health, 27(2), 143-150. Hornak, J., Rolls, E. T., & Wade, D. (1996). Face and voice expression identification in patients with emotional and behavioral changes following ventral frontal lobe damage. Neuropsychologia, 34(4), 247–261. Jong, T. R. de, & Neumann, I. D. (2017). Oxytocin and Aggression. In SpringerLink (pp. 1–18). Springer, Berlin, Heidelberg. doi: 10.1007/7854_2017_13 Kern, S., Oakes, T. R., Stone, C. K., McAuliff, E. M., Kirschbaum, C., & Davidson, R. J. (2008). Glucose metabolic changes in the prefrontal cortex are associated with HPA axis response to a psychosocial stressor. Psychoneuroendocrinology, 33(4), 517–529. doi: 10.1016/j.psyneuen.2008.01.010 Krakowski, M. (2003). Violence and Serotonin: Influence of Impulse Control, Affect Regulation and Social Functioning. The Journal of Neuropsychiatry and Clinical Neurosciences, 15(3), 294. Mathews, V. P., Kronenberger, W. G., Wang, Y., Lurito, J. T., Lowe, M. J., & Dunn, D. W. (2005). Media Violence Exposure and Frontal Lobe Activation Measured by Functional Magnetic Resonance Imaging in Aggressive and Nonaggressive Adolescents. Journal of Computer Assisted Tomography, 29(3), 287. Mendez, M. F. (2010). The unique predisposition to criminal violations in frontotemporal dementia. Journal of the American Academy of Psychiatry and the Law Online, 38(3), 318-323. New, A. S., Buchsbaum, M. S., Hazlett, E. A., Goodman, M., Koenigsberg, H. W., Lo, J., & Siever, L. J. (2004). Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacology, 176(3-4), 451-458. Raine, A., Meloy, J. R., Bihrle, S., Stoddard, J., Lacasse, L., & Buchsbaum, M. S. (1998). Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behavioral Sciences & the Law, 16(3), 319–332. Rubia, K., Lee, F., Cleare, A. J., Tunstall, N., Fu, C. H. Y., Brammer, M., & McGuire, P. (2005). Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI. Psychopharmacology, 179(4), 791–803. Schiltz, K., Witzel, J.G., Bausch-Holterhoff., J., & Bogerts, B. (2013). High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study. Eur Arch Psychiatry Clin Neuosci, 263, 607-616. Séguin, J. R. (2009). The frontal lobe and aggression. The European Journal of Developmental Psychology, 6(1), 100–119. Seo, D., Patrick, C. J., & Kennealy, P. J. (2008). Role of Serotonin and Dopamine System Interactions in the Neurobiology of Impulsive Aggression and its Comorbidity with other Clinical Disorders. Aggression and Violent Behavior, 13(5), 383–395. Siever, L. J. (2008). Neurobiology of aggression and violence. American Journal of Psychiatry, 165(4), 429-442. Sollberger, M., Stanley, C. M., Wilson, S. M., Gyurak, A., Beckman, V., Growdon, M., & Rankin, K. P. (2009). Neural basis of interpersonal traits in neurodegenerative diseases. Neuropsychologia, 47(13), 2812-2827. Stamey, W., & Jankovic, J. (2008). Impulse control disorders and pathological gambling in patients with Parkinson disease. The neurologist, 14(2), 89-99. Summers, C. H., Larson, E. T., Ronan, P. J., Hofmann, P. M., Emerson, A. J., & Renner, K. J. (2000). Serotonergic Responses to Corticosterone and Testosterone in the Limbic System. General and Comparative Endocrinology, 117(1), 151–159. Sutton, G. (2016). The brain and crime. Retrieved from www.catalyststudent.org.uk. van Bokhoven, I., Van Goozen, S. H. M., van Engeland, H., Schaal, B., Arseneault, L., Séguin, J. R., & Tremblay, R. E. (2005). Salivary cortisol and aggression in a population-based longitudinal study of adolescent males. Journal of Neural Transmission, 112(8), 1083–1096. van Bokhoven, Irene, van Goozen, S. H. M., van Engeland, H., Schaal, B., Arseneault, L., Séguin, J. R., & Tremblay, R. E. (2006). Salivary testosterone and aggression, delinquency, and social dominance in a population-based longitudinal study of adolescent males. Hormones and Behavior, 50(1), 118–125. van Goozen, S. H. M., Fairchild, G., Snoek, H., & Harold, G. T. (2007). The evidence for a neurobiological model of childhood antisocial behavior. Psychological Bulletin, 133(1), 149–182. Woermann, F. G., Elst, L. T. van, Koepp, M. J., Free, S. L., Thompson, P. J., Trimble, M. R., & Duncan, J. S. (2000). Reduction of frontal neocortical grey matter associated with affective aggression in patients with temporal lobe epilepsy: an objective voxel by voxel analysis of automatically segmented MRI. Journal of Neurology, Neurosurgery & Psychiatry, 68(2), 162–169. Wolf, R. C., & Koenigs, M. (2015). Brain Imaging Research on Violence and Aggression: Pitfalls and Possibilities for Criminal Justice. Science in the Courtroom. Retrieved from http://koenigslab.psychiatry.wisc.edu/pdfs/wolf_koenigs_ScienceInCourt.pdf. Yang, Y., Raine, A., Narr, K. L., Colletti, P., & Toga, A. W. (2009). Localization of Deformations Within the Amygdala in Individuals with Psychopathy. Archives of General Psychiatry, 66(9), 986–994.