Published May 7, 2018 | Version v1
Conference paper Open

Increasing Boundary Layer Stability for Varying Degrees of Diffuser Loading

  • 1. Institute of Turbomachinery and Fluid Dynamics, Leibniz Universität Hannover, Germany

Description

Increasing the pressure recovery in diffusers is an ongoing endeavour in engineering. In this paper, we analyse, based on extensive numerical simulations and experiments conducted for a wide range of half-opening angles, the effect of boundary layer stability on pressure recovery in diffusers under the influence of an unsteady rotor outflow.

We present, based on integral stage design parameters, analytically devised and empirically confirmed correlations for the quantification of additional pressure recovery in diffusers under non-uniform, unsteady inflow conditions and their sensitivity to the half-opening angle.

We demonstrate that the sensitivity of the pressure recovery to the half-opening angle is caused mainly by a change of the effective area ratio due to blockage effects and provide a simple ansatz to estimate the magnitude of this effect. The estimate is shown to agree with experimental and numerical data.

We define a parameter, based on the diffusion of vorticity, to quantify the processes that stabilise the boundary layer and, for the first time, present a correlation that unites a wide range of different half-opening angles.

Files

GPPS-NA-2018-0006.pdf

Files (669.6 kB)

Name Size Download all
md5:caca4ac32a1799f592d5c7243d332235
669.6 kB Preview Download

Additional details

References

  • Bardili, W., Notter, O., Betz, B., and Ibel, G. (1939). "Wirkungsgrad von Diffusoren". German. In: Bericht des Flugtechnischen Instituts an der Technischen Hochschule Stuttgart, pp. 691–697.
  • Cochran, D. L. and Kline, S. J. (1958). Use of Short Flat Vanes for Producing Efficient Wide-angle Two-dimensional Subsonic Diffusers. NACA Technical Note. National Advisory Committee for Aeronautics.
  • Drechsel, B., Müller, C., Herbst, F., and Seume, J. R. (2015). "Influence of Turbulent Flow Characteristics and Coherent Vortices on the Pressure Recovery of Annular Diffusers Part B: Scale-Resolving Simulations". In: Proc. ASME. 56635. Vol. 2A. Paper No. GT2015-42477, V02AT38A010:1–13. doi : 10.1115/GT2015-42477.
  • Drechsel, B., Seume, J. R., and Herbst, F. (2016). "On the Numerical Prediction of the Influence of Tip Flow on Diffuser Stability". In: International Journal of Gas Turbine, Propulsion and Power Systems (JGPP) 8.3, pp. 29–38.
  • ESDU (1990). Introduction to design and performance data for diffusers. No. 76027. London, UK: Engineering Sciences Data Unit. isbn : 9780856791642.
  • Kato, M. and Launder, B. E. (1993). "The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders". In: 9th Symposium on Turbulent Shear Flows, pp. 10.4.1– 10.4.6.
  • Kluß, D., Stoff, H., and Wiedermann, A. (2009). "Effect of Wakes and Secondary Flow on Re-attachment of Turbine Exit Annular Diffuser Flow". In: ASME J. Turbomach. 131.4, 041012:1–12. doi : 10.1115/1.3070577.
  • Kuschel, M. (2014). "Einfluss von Sekund ̈ arstromungen auf den Druckrückgewinn in Axial diffusoren". Ph.D. Thesis. Germany: Leibniz Universität Hannover.
  • Kuschel, M., Drechsel, B., Kluß, D., and Seume, J. R. (2015). "Influence of Turbulent Flow Characteristics and Coherent Vortices on the Pressure Recovery of Annular Diffusers Part A: Experimental Results". In: Proc. ASME. 56635. Vol. 2A. Paper No. GT2015-42476, V02AT38A009:1–13. doi : 10.1115/GT2015- 42476.
  • Kuschel, M. and Seume, J. R. (2011). "Influence of Unsteady Turbine Flow on the Performance of an Exhaust Diffuser". In: Proc. ASME. 54679. Vol. 7. Paper No. GT2011-45673, pp. 1551–1561. doi : 10.1115/GT2011-45673.
  • Menter, F. R. (1994). "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications". In: AIAA Journal 32.8, pp. 1598–1605. doi : 10.2514/3.12149.
  • Menter, F. R. and Egorov, Y (2010). "The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description". In: Flow Turbulence Combust. 85.1, pp. 113–138. doi : 10.1007/s10494- 010- 9264-5.
  • Mimic, D., Drechsel, B., and Herbst, F. (2018). "Correlation between Pressure Recovery of Highly Loaded Annular Diffusers and Integral Stage Design Parameters". In: ASME J. Turbomach. In press. doi : 10.1115/1.4039821.
  • Mimic, D., J ̈ atz, C., and Herbst, F. (2017). "Correlation between Total Pressure Losses of Highly Loaded Annular Diffusers and Integral Stage Design Parameters". In: Proceedings of GPP Forum: Shanghai 2017. Paper No. GPPS-2017-0063. Shanghai, China.
  • Sieker, O. (2010). "Einfluss von Drall und Nachlaufdellen auf das Strömungsverhalten und den Druckrückgewinn in axialen Turbinenaustrittsdiffusoren". Ph.D. Thesis. Germany: Leibniz Universität Hannover.
  • Sieker, O. and Seume, J. R. (2008). "Influence of rotating wakes on separation in turbine exhaust diffusers". In: J. Therm. Sci. 17.1, pp. 42–49. doi : 10.1007/s11630-008-0042-9.
  • Sovran, G. and Klomp, D. (1967). "Experimentally deter- mined Optimum Geometries for Rectilinear Diffusers with Rect- angular Conical or Annular Cross-Section". In: Fluid Mech. Int. Flow, pp. 270–319.
  • Traupel, W. (2001). Thermische Turbomaschinen. Springer-Verlag.
  • Vassiliev, V., Irmisch, S., Abdel-Wahab, S., and Granovskiy, A. (2011). "Impact of the Inflow Conditions on the Heavy- Duty Gas Turbine Exhaust Diffuser Performance". In: ASME J. Turbomach. 134.4, 041018:1–9. doi : 10.1115/1.4003714.
  • Wilson, D. G. and Korakianitis, T. (2014). The Design of High-Efficiency Turbomachinery and Gas Turbines. MIT Press. isbn : 9780262526685.