SCIAMACHY NO regression fit MCMC samples
Authors/Creators
- 1. Norwegian University of Science and Technology (NTNU), Trondheim, Norway
Description
SCIAMACHY mesosphere NO data and regression model samples
SCIAMACHY mesosphere daily zonal mean NO data and Markov-Chain Monte-Carlo samples from the regression coefficient distributions, derived from and for use with the sciapy regression module.
This data set contains the following files:
NO_regress_output_pGM_Lya_ltcs_exp1dscan60d_km32_float32.nc,NO_regress_output_pGM_Lya_ltcs_exp1dscan60d_km32_float64.nc- samples from the regression coefficient distributions (single and double precision)NO_regress_quantiles_pGM_Lya_ltcs_exp1dscan60d_km32.nc- the 0.1, 2.5, 16, 50, 84, 97.5, and 99.9 percentiles of the sampled distributionsscia_nom_dzmNO_2002-2012_v6.2.1_2.2_akm0.002_geomag10_nw.nc- the SCIAMACHY daily zonal mean NO datasciapy_regress_tutorial.ipynb- example ipython notebook
MCMC Samples
The files NO_regress_output..._float32.nc and NO_regress_output..._float64.nc contain MCMC samples of the model as single and double precision floats. The file NO_regress_quantiles....nc contains the 0.1, 2.5, 16, 50, 84, 97.5, and 99.9 percentiles of the sampled distributions and is provided for convenience. The files contain the following parameters:
kernel:log_sigma,kernel:log_rho- the "strength" and "lengthscale" of the Matérn-3/2 Gaussian Process kernelmean:offset:value- the constant offset of the NO model in [\(10^6\) cm\(^{-3}\)]mean:Lya:amp- the Lyman-\(\alpha\) coefficient of the mean model in [\(10^6\) cm\(^{-3}\) / Lyman-\(\alpha\)]mean:GM:amp- the geomagnetic coefficient (AE) in [\(10^6\) cm\(^{-3}\) / nT]mean:GM:tau0- the constant lifetime of the geomagnetic lifetime in [d]mean:GM:taucos1,mean:GM:tausin1- cosine and sine amplitudes of the yearly geomagnetic lifetime variation in [d]
Daily zonal mean NO data
The model was trained on the SCIAMACHY mesosphere NO dataset, binned into 10° geomagnetic latitude bins using the provided gm_lat variable and using the standard error of the mean as data uncertainties. The data are uploaded as scia_nom_dzmNO_2002-2012_v6.2.1_2.2_akm0.002_geomag10_nw.nc and were prepared by running (after installing sciapy):
bash> scia_daily_zonal_mean.py -g -b'-90:90:10' -o <daily_zonal_mean_NO.nc> </path/to/SCIAMACHY_NO_NOM_orbits_20??_v6.2.1.nc>
Regression sampling
The samples were generated by running the following command:
bash> python -m sciapy.regress <daily_zonal_mean_NO.nc> --proxies Lya:<Lyman-alpha_file.dat>,GM:<AE_file.dat> -A <altitude> -L <geomag_latitude_bin> -w 14 -b 800 -p 1400 -F \"\" -I GM --fit_annlifetimes GM --positive_proxies GM --lifetime_scan=60 --lifetime_prior exp -k -K Mat32 -O0 -m "nom_pGM_Lya_ltcs_exp1dscan60d_km32" -P
Files
sciapy_regress_tutorial.ipynb
Files
(5.0 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:1dbe14804a8830f6cdefe468a90c707b
|
1.4 GB | Download |
|
md5:ba30ac1379e18b9bce7d50685e1770f1
|
2.9 GB | Download |
|
md5:915a941e60c59f4ba272a68bf724407c
|
144.5 kB | Download |
|
md5:f82b6b677ee1c6dc97054da17f07d9c1
|
625.4 MB | Download |
|
md5:da3408ca7a84b902418497edd355571b
|
91.3 kB | Preview Download |
Additional details
Related works
- Is compiled by
- 10.5281/zenodo.1401370 (DOI)
- https://github.com/st-bender/sciapy (URL)
- Is supplemented by
- 10.5281/zenodo.1009078 (DOI)