Analysis code for paper: Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction
Description
Analysis and plotting scripts for paper by R.D. Russotto and T.P. Ackerman in Atmos. Chem. Phys. special issue on the Geoengineering Model Intercomparison Project.
DOI for paper: 10.5194/acp-2018-345
Python code was written by Rick Russotto. The APRP.py module was based in part on Matlab scripts provided by Yen-Ting Hwang. The vertical regridding code was based in part on the "convert_sigma_to_pres" algorithm by Dan Vimont, available at http://www.aos.wisc.edu/~dvimont/matlab/.
If you use any of this code, please acknowledge where it came from.
Python scripts were run using Python 2.7.9. Versions of packages used:
-Matplotlib 1.5.1
-NumPy 1.8.2
-NetCDF4 1.1.0
Which scripts make which figures in the paper:
Figure 1:
isG1ReductionCorrelatedWithECS.py
Figure 2:
taZonalMeanProfiles.py
Figure 3:
husZonalMeanProfiles.py
Figure 4:
cloudFractionZonalMeanProfiles.py
Figure 5:
multiModelMeanCloudsV2.py
Figure 6:
multiModelMeanPredictorsV2.py
Figure 7:
multiModelMeanAPRP.py
Figures 8, S9, S10, S11:
analyzeKernelResults.py
Figures 9, S12:
mapLWCRE.py
Figures 10, 11:
barGraphsV2.py
Figures S1, S2, S3:
cloudFractionMaps.py
Figures S4, S5:
lowCloudPredictorMaps.py
Figures S6, S7, S8:
scriptUsingAPRPonGeoMIP.py
Figure S13:
rapidVsFeedbackAPRP.py
Other scripts and modules that the above scripts depend on:
APRP.py
calculateClimatologiesForRadiativeKernels.py
correctCESM_rlut.py
find_rlut_correction.py
geomipFunctions.py
saveModelLatsLons.py
zonalMeanCloudFraction_CSIRO.py
zonalMeanCloudFraction_HadGEM2-ES.py
A standalone version of the APRP code can be found at https://github.com/rdrussotto/pyAPRP, with further documentation.
Files
Files
(434.1 kB)
Name | Size | Download all |
---|---|---|
md5:5f081a7b19add6ab7bcbe5d43635288a
|
36.0 kB | Download |
md5:07df5a23dd3b97176a2be4eee09c3b78
|
26.8 kB | Download |
md5:2af1bab571320fbc1ef07751fdb950cf
|
21.2 kB | Download |
md5:8580dd1c53994253a5bc1117713abc74
|
26.4 kB | Download |
md5:ab6cd5df0d64c4502d270d2930e10539
|
26.6 kB | Download |
md5:aa7c201a1993514b23832fe2f3fe27e7
|
12.3 kB | Download |
md5:299e377bff92effb4d828b83135a7f44
|
2.6 kB | Download |
md5:43d5235759e7e0e13a299e4d6b9e531e
|
5.4 kB | Download |
md5:92dfe6518bc89061c64fe5256dd1b72a
|
38.0 kB | Download |
md5:8c3f9e230896fcf1e0ff05ee4a5ded00
|
12.2 kB | Download |
md5:c336087bfa8dc43b0b2ffbf1edafb3f8
|
13.4 kB | Download |
md5:d3812ce9b8c6fecc64f5849315f08c05
|
70 Bytes | Download |
md5:bac84f5b75a2591163cf7399c05eb9b7
|
26.0 kB | Download |
md5:70a5764bf28bb7de9a497d19db593103
|
26.1 kB | Download |
md5:20e6499f3dac4d66f9ddb7d35a532677
|
16.2 kB | Download |
md5:90504930edb0c57190d15450560a0869
|
12.3 kB | Download |
md5:cf67f3ea8ab92140f6ddad613be4141b
|
8.0 kB | Download |
md5:d67614db5cb42968a0ae8d97ac76d908
|
21.4 kB | Download |
md5:1c1a11277ec40641ea5b1308dae9d1e9
|
2.4 kB | Download |
md5:3f4bfa3b8a70e58f119eae223b91d9dd
|
46.6 kB | Download |
md5:2c0e80958b9622a4ff9ca2f3f1d2396a
|
12.4 kB | Download |
md5:ee6654aabed65efc8290130fba4a22ed
|
16.7 kB | Download |
md5:a4481c2f6b82f9c88f219c70ae6f8c91
|
25.2 kB | Download |
Additional details
Related works
- Is supplement to
- 10.5194/acp-2018-345 (DOI)