Published August 2, 2024 | Version v1
Journal article Open

Exploring the efficacy of predacious diving beetles as potential nature-based solution for combatting the invasive mosquito Aedes albopictus (Skuse, 1894)

  • 1. Institute of Tropical Medicine, Antwerp, Belgium|University of Antwerp, Antwerp, Belgium
  • 2. Unit Freshwater Habitats, Research Institute Nature and Forest, Brussels, Belgium
  • 3. Unit Species, Brussels Environment, Brussels, Belgium
  • 4. Department of Leisure, Green areas region of Antwerp, Deurne, Belgium
  • 5. Institute of Tropical Medicine, Antwerp, Belgium
  • 6. Goethe University, Frankfurt am Main, Germany
  • 7. Institute of Tropical Medicine, Antwerp, Belgium|Goethe University, Frankfurt am Main, Germany|University of Antwerp, Antwerp, Belgium

Description

The invasive mosquito species Aedes albopictus (Skuse, 1894) is rapidly spreading in Europe, posing an increasing threat because of its high vector competence for chikungunya and dengue virus. An integrative and eco-friendly control of these populations is required to prevent mosquito-borne disease outbreaks. Traditionally-used insecticides or other chemical control agents are often expensive, harmful to the environment, strictly controlled or completely banned in several countries. Additionally, insecticide resistance is a potential threat. One possibility for biological control agents is the use of native aquatic beetles as natural predators of mosquitoes to boost Bacillus thuringiensis israelensis (Bti) interventions. Thirty predatory aquatic beetle taxa were caught in Belgium and kept at the Institute of Tropical Medicine's insectary to test predation rate and prey choice on Aedes albopictus and Culex pipiens Linnaeus, 1758. Predation rates suggest at least four efficient dytiscid predators that are known to inhabit small, temporary habitats in Europe. Further experiments on prey choice reveal a clear preference for Aedes albopictus over alternative larval prey (Culex pipiens, Daphnia sp., Chaoboridae). We found a strong ecological overlap of the feeding niche of A. albopictus and the hunting zone of dytiscid predators in the benthic layer of small waterbodies. Our findings on the efficacy are very encouraging to further assess the potential of native predacious diving beetles as a biological control agent against the invasive A. albopictus in Europe.

Files

NB_article_121987.pdf

Files (1.2 MB)

Name Size Download all
md5:9f7b64da6fdd09fe8967147edc495f2c
1.2 MB Preview Download

System files (337.5 kB)

Name Size Download all
md5:c0a6dbbe6c64a478012b98387cc4800a
337.5 kB Download

Linked records

Additional details

References

  • Abdelnabi R, Neyts J, Delang L (2017) Chikungunya virus infections: Time to act, time to treat. Current Opinion in Virology 24: 25–30. https://doi.org/10.1016/j.coviro.2017.03.016
  • Achee NL, Grieco JP, Vatandoost H, Seixas G, Pinto J, Ching-Ng L, Martins AJ, Juntarajumnong W, Corbel V, Gouagna C, David JP, Logan JG, Orsborne J, Marois E, Devine GJ, Vontas J (2019) Alternative strategies for mosquito-borne arbovirus control. PLoS Neglected Tropical Diseases 13(1): e0006822. https://doi.org/10.1371/journal.pntd.0006822
  • Al-Osaimi HM, Kanan M, Marghlani L, Al-Rowaili B, Albalawi R, Saad A, Alasmari S, Althobaiti K, Alhulaili Z, Alanzi A, Alqarni R, Alsofiyani R, Shrwani R (2024) A systematic review on malaria and dengue vaccines for the effective management of these mosquito borne diseases: Improving public health. Human Vaccines & Immunotherapeutics 20(1): 2337985. https://doi.org/10.1080/21645515.2024.2337985
  • Alcaraz C, Bisazza A, Garcia-Berthou E (2008) Salinity mediates the competitive interactions between invasive mosquitofish and an endangered fish. Oecologia 155(1): 205–213. https://doi.org/10.1007/s00442-007-0899-4
  • Arrese EL, Soulages JL (2010) Insect Fat Body: Energy, Metabolism, and Regulation. Annual Review of Entomology 55(1): 207–225. https://doi.org/10.1146/annurev-ento-112408-085356
  • Balatsos G, Karras V, Puggioli A, Balestrino F, Bellini R, Papachristos DP, Milonas PG, Papadopoulos NT, Malfacini M, Carrieri M, Kapranas A, Mamai W, Mastronikolos G, Lytra I, Bouyer J, Michaelakis A (2024) Sterile Insect Technique (SIT) field trial targeting the suppression of Aedes albopictus in Greece. Parasite 31: 17. https://doi.org/10.1051/parasite/2024020
  • Baldacchino F, Caputo B, Chandre F, Drago A, della Torre A, Montarsi F, Rizzoli A (2015) Control methods against invasive Aedes mosquitoes in Europe: A review. Pest Management Science 71(11): 1471–1485. https://doi.org/10.1002/ps.4044
  • Balfour-Browne F (1940) British Water Beetles (Vol. I). Ray Society, London.
  • Bameul F (1990) Observations sur des coléoptères aquatiques récoltés dans une piscine publique de la ville de Bordeaux (Coleoptera Haliplidae, Dytiscidae, Hydrophilidae, Dryopidae). Bulletin de la société linnéenne de Bordeaux 18: 41–52.
  • Bashir A, Kumar NP, Khan AB (2017) Climatic factors influences the ecology of the Platynectes sp. nov. Predator to the dengue and chikungunya vectors in the rubber plantations of Kerala, India. International Journal of Zoology Studies 2(5): 68–77.
  • Bashir A, Kumar NP, Khan AB (2018) Description of a new species, Platynectes sahyadriensis (Coleoptera: Dytiscidae), predatory to Aedes albopictus (Diptera: Culicidae) from the foothills of Western Ghats, Kerala, India. Biomedical Journal of Scientific & Technical Research 2(3): 2673–2678. https://doi.org/10.26717/BJSTR.2018.02.000767
  • Bay EC (1974) Predator-prey relationships among aquatic insects. Annual Review of Entomology 19(1): 441–453. https://doi.org/10.1146/annurev.en.19.010174.002301
  • Bock F, Kuch U, Pfenninger M, Müller R (2015) Standardized Laboratory Feeding of Larval Aedes japonicus japonicus (Diptera: Culicidae). Journal of Insect Science 15(1): 144. https://doi.org/10.1093/jisesa/iev126
  • Bofill CE, Yee DA (2019) An army of one: Predacious diving beetle life history stages affect interactions with shared mosquito prey. Hydrobiologia 827(1): 201–209. https://doi.org/10.1007/s10750-018-3765-y
  • Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: Current knowledge and future perspectives. Trends in Parasitology 29(9): 460–468. https://doi.org/10.1016/j.pt.2013.07.003
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1–2): 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Cafarchia C, Pellegrino R, Romano V, Friuli M, Demitri C, Pombi M, Benelli G, Otranto D (2022) Delivery and effectiveness of entomopathogenic fungi for mosquito and tick control: Current knowledge and research challenges. Acta Tropica 234: 106627. https://doi.org/10.1016/j.actatropica.2022.106627
  • Caputo B, Moretti R, Virgillito C, Manica M, Lampazzi E, Lombardi G, Serini P, Pichler V, Beebe NW, Della Torre A, Calvitti M (2023) A bacterium against the tiger: Further evidence of the potential of noninundative releases of males with manipulated Wolbachia infection in reducing fertility of Aedes albopictus field populations in Italy. Pest Management Science 79(9): 3167–3176. https://doi.org/10.1002/ps.7495
  • Chandra G, Mandal SK, Ghosh AK, Das D, Banerjee SS, Chakraborty S (2008) Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera: Dytiscidae). BMC Infectious Diseases 8(1): 138. https://doi.org/10.1186/1471-2334-8-138
  • Chiu MC, Neoh KB, Hwang SY (2024) The effect of attractive toxic sugar bait on the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae) in community farms in Northern Taiwan. Acta Tropica 250: 107102. https://doi.org/10.1016/j.actatropica.2023.107102
  • Classen R, Dettner K (1983) Pygidial Defensive Titer and Population-Structure of Agabus bipustulatus L and Agabus paludosus F (Coleoptera, Dytiscidae). Journal of Chemical Ecology 9(2): 201–209. https://doi.org/10.1007/BF00988037
  • Cochet A, Calba C, Jourdain F, Grard G, Durand GA, Guinard A, Noel H, Paty MC, Franke F (2022) Autochthonous dengue in mainland France, 2022: Geographical extension and incidence increase. Eurosurveillance 27(44). https://doi.org/10.2807/1560-7917.ES.2022.27.44.2200818
  • Culler LE, Lamp WO (2009) Selective predation by larval Agabus (Coleoptera: Dytiscidae) on mosquitoes: support for conservation-based mosquito suppression in constructed wetlands. Freshwater Biology 54(9): 2003–2014. https://doi.org/10.1111/j.1365-2427.2009.02230.x
  • Davy-Bowker J (2002) A mark and recapture study of water beetles (Coleoptera: Dytiscidae) in a group of semi-permanent and temporary ponds. Aquatic Ecology 36(3): 435–446. https://doi.org/10.1023/A:1016550127986
  • Deblauwe I, Demeulemeester J, De Witte J, Hendy A, Sohier C, Madder M (2015) Increased detection of Aedes albopictus in Belgium: No overwintering yet, but an intervention strategy is still lacking. Parasitology Research 114(9): 3469–3477. https://doi.org/10.1007/s00436-015-4575-z
  • Deblauwe I, Brosens D, De Wolf K, Smitz N, Vanslembrouck A, Schneider A, De Witte J, Verle I, Dekoninck W, De Meyer M, Backeljau T, Gombeer S, Meganck K, Vanderheyden A, Müller R, Van Bortel W (2022a) MEMO: Monitoring of exotic mosquitoes in Belgium. Gigabyte, 1–9. https://doi.org/10.46471/gigabyte.59
  • Deblauwe I, De Wolf K, De Witte J, Schneider A, Verle I, Vanslembrouck A, Smitz N, Demeulemeester J, Van Loo T, Dekoninck W, Krit M, Madder M, Müller R, Van Bortel W (2022b) From a long-distance threat to the invasion front: A review of the invasive Aedes mosquito species in Belgium between 2007 and 2020. Parasites & Vectors 15(1): 206. https://doi.org/10.1186/s13071-022-05303-w
  • Delnat V, Janssens L, Stoks R (2020) Effects of predator cues and pesticide resistance on the toxicity of a (bio)pesticide mixture. Pest Management Science 76(4): 1448–1455. https://doi.org/10.1002/ps.5658
  • Dobson SL (2021) When more is less: Mosquito population suppression using sterile, incompatible and genetically modified male mosquitoes. Journal of Medical Entomology 58(5): 1980–1986. https://doi.org/10.1093/jme/tjab025
  • Donald CL, Siriyasatien P, Kohl A (2020) Toxorhynchites species: A review of current knowledge. Insects 11(11): 747. https://doi.org/10.3390/insects11110747
  • Eyre MD, Ball SG, Foster GN (1986) An initial classification of the habitats of aquatic Coleoptera in North-East England. Journal of Applied Ecology 23(3): 841–852. https://doi.org/10.2307/2403938
  • Farajollahi A, Price DC (2013) A rapid identification guide for larvae of the most common North American container-inhabiting Aedes species of medical importance. Journal of the American Mosquito Control Association 29(3): 203–221. https://doi.org/10.2987/11-6198R.1
  • Flandes X, Hansen CA, Palani S, Abbas K, Bennett C, Caro WP, Hutubessy R, Khazhidinov K, Lambach P, Maure C, Marshall C, Rojas DP, Rosewell A, Sahastrabuddhe S, Tufet M, Wilder-Smith A, Beasley DWC, Bourne N, Barrett ADT (2023) Vaccine value profile for Chikungunya. Vaccine 42(19): S9–S24. https://doi.org/10.1016/j.vaccine.2023.07.069
  • Foster GN, Friday LE (2011) Keys to the water beetles of Britain and Ireland (part1). Field Studies Council, Shrewsbury, 152 pp. https://doi.org/10.1079/9781800625730.0000
  • Fransiscolo ME (1979) Coleoptera Haliplidae, Hygrobiidae, Gyrinidae, Dytiscidae. Fauna d'Italia, Bologna.
  • Galewski K (1971) A study on morphobiotic adaptations of European species of the Dytiscidae (Coleoptera). Polskie Pismo Entomologiczne 41(3): 479–702.
  • Galewski K (1973) Stadial differentiation in larvae of the Dytiscidae (Coleoptera). Polskie Pismo Entomologiczne 43: 15–25.
  • Giunti G, Becker N, Benelli G (2023) Invasive mosquito vectors in Europe: From bioecology to surveillance and management. Acta Tropica 239: 106832. https://doi.org/10.1016/j.actatropica.2023.106832
  • Gossner CM, Ducheyne E, Schaffner F (2018) Increased risk for autochthonous vector-borne infections transmitted by Aedes albopictus in continental Europe. Eurosurveillance 23(24). https://doi.org/10.2807/1560-7917.ES.2018.23.24.1800268
  • Graziosi I, Aranda C, Balestrino F, Bellini R, Busquets N, Coulibaly M, Crisanti A, Diallo D, Diallo M, Gaye A, Guelbeogo M, Ignjatović-Ćupina A, Napp S, N'Falé S, Petrić D, Pollegioni P, Simoni A, Zgomba M, Müller R (2020) A litmus test for harmonized mosquito monitoring across Europe and Africa. InfraVec2 Output manuscript, 22 pp. https://doi.org/10.1101/2020.01.30.927020
  • Inoda T, Kamimura S (2004) New open aquarium system to breed larvae of water beetles (Coleoptera: Dytiscidae). Coleopterists Bulletin 58(1): 37–43. https://doi.org/10.1649/591
  • Inoda T, Kitano T (2013) Mass breeding larvae of the critically endangered diving beetles Dytiscus sharpi sharpi and Dytiscus sharpi validus (Coleoptera: Dytiscidae). Applied Entomology and Zoology 48(3): 397–401. https://doi.org/10.1007/s13355-013-0176-4
  • Jaffal A, Fite J, Baldet T, Delaunay P, Jourdain F, Mora-Castillo R, Olive MM, Roiz D (2023) Current evidences of the efficacy of mosquito mass-trapping interventions to reduce Aedes aegypti and Aedes albopictus populations and Aedes-borne virus transmission. PLoS Neglected Tropical Diseases 17(3): e0011153. https://doi.org/10.1371/journal.pntd.0011153
  • James HG (1965) Predators of Aedes atropalpus (Diptera: Culicidae) and of other moquitoes breeding in rock pools in Ontario. Canadian Journal of Zoology 43(1): 5. https://doi.org/10.1139/z65-013
  • Jones RT, Ant TH, Cameron MM, Logan JG (2021) Novel control strategies for mosquito-borne diseases. Philosophical Transactions of the Royal Society B 376(1818): 20190802. https://doi.org/10.1098/rstb.2019.0802
  • Jourdan J, Riesch R, Cunze S (2021) Off to new shores: Climate niche expansion in invasive mosquitofish (Gambusia spp.). Ecology and Evolution 11(24): 18369–18400. https://doi.org/10.1002/ece3.8427
  • Juliano SA, Lounibos LP (2005) Ecology of invasive mosquitoes: Effects on resident species and on human health. Ecology Letters 8(5): 558–574. https://doi.org/10.1111/j.1461-0248.2005.00755.x
  • Kehl S, Dettner K (2007) Flugfähigkeit der in Deutschland vorkommenden adephagen Wasserkäfer (Coleoptera, Hydradephaga). Entmologie heute (19): 141–161.
  • Kesavaraju B, Brey CW, Farajollahi A, Evans HL, Gaugler R (2011) Effect of malathion on larval competition between Aedes albopictus and Aedes atropalpus (Diptera: Culicidae). Journal of Medical Entomology 48(2): 479–484. https://doi.org/10.1603/ME10101
  • Kitching RL, Orr AG (1996) The foodweb from water-filled treeholes in Kuala Belalong, Brunei. The Raffles Bulletin of Zoology 44(2): 405–413.
  • Kramer IM, Kress A, Klingelhofer D, Scherer C, Phuyal P, Kuch U, Ahrens B, Groneberg DA, Dhimal M, Muller R (2020) Does winter cold really limit the dengue vector Aedes aegypti in Europe? Parasites & Vectors 13(1): 178. https://doi.org/10.1186/s13071-020-04054-w
  • Kramer IM, Pfeiffer M, Steffens O, Schneider F, Gerger V, Phuyal P, Braun M, Magdeburg A, Ahrens B, Groneberg DA, Kuch U, Dhimal M, Muller R (2021) The ecophysiological plasticity of Aedes aegypti and Aedes albopictus concerning overwintering in cooler ecoregions is driven by local climate and acclimation capacity. The Science of the Total Environment 778: 146128. https://doi.org/10.1016/j.scitotenv.2021.146128
  • Kroeger I, Liess M, Dziock F, Duquesne S (2013) Sustainable control of mosquito larvae in the field by the combined actions of the biological insecticide Bti and natural competitors. Journal of Vector Ecology 38(1): 82–89. https://doi.org/10.1111/j.1948-7134.2013.12012.x
  • Kumar NP, Bashir A, Abidha S, Sabesan S, Jambulingam P (2014) Predatory potential of Platynectes sp. (Coleoptera: Dytiscidae) on Aedes albopictus, the vector of dengue/chikungunya in Kerala, India. Tropical Biomedicine 31(4): 736–741.
  • Larson DJ, Alarie Y, Roughley RE (2000) Predacious diving beetles (Coleoptera: Dytiscidae) of the Nearctic region. NRC Research Press, Ottawa.
  • Liao W, Venn S, Niemelä J (2020) Environmental determinants of diving beetle assemblages (Coleoptera: Dytiscidae) in an urban landscape. Biodiversity and Conservation 29(7): 2343–2359. https://doi.org/10.1007/s10531-020-01977-9
  • Lundkvist E, Landin J, Karlsson F (2002) Dispersing diving beetles (Dytiscidae) in agricultural and urban landscapes in south-eastern Sweden. Annales Zoologici Fennici (39): 109–123.
  • Lundkvist E, Landin J, Jackson M, Svensson C (2003) Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in laboratory tests of prey preference. Bulletin of Entomological Research 93(3): 219–226. https://doi.org/10.1079/BER2003237
  • Malla RK, Mandal KK, Burman S, Das S, Ghosh A, Chandra G (2023) Numerical analysis of predatory potentiality of Toxorhynchites splendens against larval Aedes albopictus in laboratory and semi-field conditions. Scientific Reports 13(1): 7403. https://doi.org/10.1038/s41598-023-34651-5
  • Martinet JP, Ferte H, Failloux AB, Schaffner F, Depaquit J (2019) Mosquitoes of North-Western Europe as Potential Vectors of Arboviruses: A Review. Viruses 11(11): 1059. https://doi.org/10.3390/v11111059
  • Miller KB, Bergsten J (2016) Diving beetles of the world. Johns Hopkins University Press, Baltimore, Maryland. https://doi.org/10.1353/book.48093
  • Müller R, Knautz T, Vollroth S, Berger R, Kress A, Reuss F, Groneberg DA, Kuch U (2018) Larval superiority of Culex pipiens to Aedes albopictus in a replacement series experiment: Prospects for coexistence in Germany. Parasites & Vectors 11(1): 80. https://doi.org/10.1186/s13071-018-2665-3
  • Nilsson AN (2011) A world catalogue of the family Noteridae, or the burrowing water beetles (Coleoptera, Adephaga) (16/08/2011 ed.). University of Umeå, Sweden.
  • Nilsson AN (2024) A paddling pool, an aquarium and three bippos. Latissimus 56: 1–4.
  • Nilsson AN, Hájek J (2024) Catalogue of Palearctic Dytiscidae (Coleoptera). (Vol. 3). Apollo books, Stenstrup.
  • Nilsson AN, Holmen M (1995) The aquatic Adephaga (Coleoptera) of Fennoscandia and Denmark. II. Dytiscidae (Vol. 32). Fauna Entomologica Scandinavia, Leiden, New York, Köln. https://doi.org/10.1163/9789004273603
  • Ogunlade ST, Meehan MT, Adekunle AI, McBryde ES (2023) A Systematic Review of Mathematical Models of Dengue Transmission and Vector Control: 2010–2020. Viruses 15(1): 254. https://doi.org/10.3390/v15010254
  • Ohba SY, Takagi M (2010) Predatory Ability of Adult Diving Beetles on the Japanese Encephalitis Vector Culex tritaeniorhynchus. Journal of the American Mosquito Control Association 26(1): 32–36. https://doi.org/10.2987/09-5946.1
  • Ohba SY, Ushio M (2015) Effect of water depth on predation frequency by diving beetles on mosquito larvae prey. Entomological Science 18(4): 519–522. https://doi.org/10.1111/ens.12143
  • Onyeka JOA (1983) Studies on the Natural Predators of Culex pipiens L and Culex torrentium Martini (Diptera, Culicidae) in England. Bulletin of Entomological Research 73(2): 185–194. https://doi.org/10.1017/S0007485300008798
  • Op De Beeck L, Janssens L, Stoks R (2016) Synthetic predator cues impair immune function and make the biological pesticide Bti more lethal for vector mosquitoes. Ecological Applications 26(2): 355–366.
  • Pauly I, Jakoby O, Becker N (2022) Efficacy of native cyclopoid copepods in biological vector control with regard to their predatory behavior against the Asian tiger mosquito, Aedes albopictus. Parasites & Vectors 15(1): 351. https://doi.org/10.1186/s13071-022-05460-y
  • Perrin A, Glaizot O, Christe P (2022) Worldwide impacts of landscape anthropization on mosquito abundance and diversity: A meta-analysis. Global Change Biology 28(23): 6857–6871. https://doi.org/10.1111/gcb.16406
  • Pichler V, Caputo B, Valadas V, Micocci M, Horvath C, Virgillito C, Akiner M, Balatsos G, Bender C, Besnard G, Bravo-Barriga D, Bueno-Mari R, Collantes F, Delacour-Estrella S, Dikolli E, Falcuta E, Flacio E, Garcia-Perez AL, Kalan K, Kavran M, L'Ambert G, Lia RP, Marabuto E, Medialdea R, Melero-Alcibar R, Michaelakis A, Mihalca A, Mikov O, Miranda MA, Muller P, Otranto D, Pajovic I, Petric D, Rebelo MT, Robert V, Rogozi E, Tello A, Zitko T, Schaffner F, Pinto J, Della Torre A (2022) Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: A warning bell for Europe. Parasites & Vectors 15(1): 280. https://doi.org/10.1186/s13071-022-05407-3
  • Pleydell DRJ, Bouyer J (2019) Biopesticides improve efficiency of the sterile insect technique for controlling mosquito-driven dengue epidemics. Communications Biology 2(1): 201. https://doi.org/10.1038/s42003-019-0451-1
  • Reuss F, Kress A, Braun M, Magdeburg A, Pfenninger M, Muller R, Mehring M (2020) Knowledge on exotic mosquitoes in Germany, and public acceptance and effectiveness of Bti and two self-prepared insecticides against Aedes japonicus japonicus. Scientific Reports 10(1): 18901. https://doi.org/10.1038/s41598-020-75780-5
  • Reyne M, Nolan M, McGuiggan H, Aubry A, Emmerson M, Marnell F, Reid N (2020) Artificial agri-environment scheme ponds do not replicate natural environments despite higher aquatic and terrestrial invertebrate richness and abundance. Journal of Applied Ecology 58(2): 281–285. https://doi.org/10.1111/1365-2664.13738
  • Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR (2019) Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Neglected Tropical Diseases 13(3): e0007213. https://doi.org/10.1371/journal.pntd.0007213
  • Scheers K, Dopagne C, Thys N (in press) An annotated checklist of the Hydradephaga of Belgium (Coleoptera: Dytiscidae; Gyrinidae; Haliplidae, Hygrobiidae & Noteridae). Belgian Journal of Entomology.
  • Schindler S, Staska B, Adam M, Rabitsch W, Essl F (2015) Alien species and public health impacts in Europe: A literature review. NeoBiota 27: 1–23. https://doi.org/10.3897/neobiota.27.5007
  • Schmalenbach I, Buchholz F, Franke HD, Saborowski R (2009) Improvement of rearing conditions for juvenile lobsters (Homarus gammarus) by co-culturing with juvenile isopods (Idotea emarginata). Aquaculture (Amsterdam, Netherlands) 289(3–4): 297–303. https://doi.org/10.1016/j.aquaculture.2009.01.017
  • Senapati A, Sardar T, Ganguly KS, Ganguly KS, Chattopadhyay AK, Chattopadhyay J (2019) Impact of adult mosquito control on dengue prevalence in a multi-patch setting: A case study in Kolkata (2014–2015). Journal of Theoretical Biology 478: 139–152. https://doi.org/10.1016/j.jtbi.2019.06.021
  • Service MW (1977) Ecological and Biological Studies on Aedes cantans (Meig) (Diptera-Culicidae) in Southern England. Journal of Applied Ecology 14(1): 159–196. https://doi.org/10.2307/2401833
  • Shaalan EA, Canyon DV (2009) Aquatic insect predators and mosquito control. Tropical Biomedicine 26(3): 223–261. https://www.ncbi.nlm.nih.gov/pubmed/20237438
  • Shaverdo HV, Esfandiari M, Khadempur A, Nasserzadeh H, Ghodrati A (2013) Diving beetles of Ahvaz City, Khuzestan Province, Iran (Coleoptera: Dytiscidae). Koleopterologische Rundschau 83: 17–22.
  • Sherpa S, Blum MGB, Capblancq T, Cumer T, Rioux D, Despres L (2019) Unravelling the invasion history of the Asian tiger mosquito in Europe. Molecular Ecology 28(9): 2360–2377. https://doi.org/10.1111/mec.15071
  • Shine R, Ward-Fear G, Brown GP (2020) A famous failure: Why were cane toads an ineffective biocontrol in Australia? Conservation Science and Practice 2(12): e296. https://doi.org/10.1111/csp2.296
  • Skuse FAA (1894) The banded mosquito of Bengal. Indian Museum Notes 3(5): 20.
  • Smitz N, De Wolf K, Deblauwe I, Kampen H, Schaffner F, De Witte J, Schneider A, Verle I, Vanslembrouck A, Dekoninck W, Meganck K, Gombeer S, Vanderheyden A, De Meyer M, Backeljau T, Werner D, Müller R, Van Bortel W (2021) Population genetic structure of the Asian bush mosquito, Aedes japonicus (Diptera, Culicidae), in Belgium suggests multiple introductions. Parasites & Vectors 14(1): 179. https://doi.org/10.1186/s13071-021-04676-8
  • Su X, Guo Y, Deng J, Xu J, Zhou G, Zhou T, Li Y, Zhong D, Kong L, Wang X, Liu M, Wu K, Yan G, Chen XG (2019) Fast emerging insecticide resistance in Aedes albopictus in Guangzhou, China: Alarm to the dengue epidemic. PLoS Neglected Tropical Diseases 13(9): e0007665. https://doi.org/10.1371/journal.pntd.0007665
  • Sulaiman S, Jeffery J (1986) The ecology of Aedes albopictus (Skuse) (Diptera: Culicidae) in a rubber estate in Malaysia. Bull. ent. Bulletin of Entomological Research 76(4): 553–557. https://doi.org/10.1017/S0007485300015066
  • Thomas SJ (2023) Is new dengue vaccine efficacy data a relief or cause for concern? NPJ Vaccines 8(1): 55. https://doi.org/10.1038/s41541-023-00658-2
  • Van Handel E (1985a) Rapid determination of glycogen and sugars in mosquitoes. Journal of the American Mosquito Control Association 1(3): 299–301. https://www.ncbi.nlm.nih.gov/pubmed/2906671
  • Van Handel E (1985b) Rapid determination of total lipids in mosquitoes. Journal of the American Mosquito Control Association 1(3): 302–304. https://www.ncbi.nlm.nih.gov/pubmed/2906672
  • Vereecken S, Vanslembrouck A, Kramer IM, Müller R (2022) Phenotypic insecticide resistance status of the Culex pipiens complex: A European perspective. Parasites & Vectors 15(1): 423. https://doi.org/10.1186/s13071-022-05542-x
  • von der Leyen (2022) Amending Implementing Regulation (EU) 2016/1141 to update the list of invasive alien species of Union concern L 186/10 C.F.R. (2022).
  • Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H (2012) Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pesticide Biochemistry and Physiology 104(2): 126–131. https://doi.org/10.1016/j.pestbp.2012.05.008
  • Yanoviak SP (2001) The macrofauna of water-filled tree holes on Barro Colorado Island, Panama. Biotropica 33(1): 110–120. https://doi.org/10.1111/j.1744-7429.2001.tb00161.x
  • Yee DA (2014) Ecology, systematics, and the natural history of predacious diving beetles (Coleoptera: Dytiscidae). Springer, Dordrecht, Heidelberg, New York, London. https://doi.org/10.1007/978-94-017-9109-0
  • Yee DA, Kesavaraju B, Juliano SA (2004) Larval feeding behavior of three co-occurring species of container mosquitoes. Journal of Vector Ecology 29(2): 315–322. https://www.ncbi.nlm.nih.gov/pubmed/15707290
  • Younes AA (2008) Predation of the diving beetle, Eretes sticticus (Coleoptera: Dytiscidae) on mosquito larvae, Culex pipiens L. (Diptera: Culicidae). Egyptian Journal of Biological Pest Control (18(2)): 303–308.
  • Young FN (1954) The water beetles of Florida. (Vol. 5): University of Florida Studies.