Journal article Open Access

Comparative Study of Sub-Critical and Supercritical ORC Applications for Exhaust Waste Heat Recovery

Buket Boz; Alvaro Diez

Waste heat recovery by means of Organic Rankine
Cycle is a promising technology for the recovery of engine
exhaust heat. However, it is complex to find out the optimum
cycle conditions with appropriate working fluids to match exhaust
gas waste heat due to its high temperature. Hence, this paper
focuses on comparing sub-critical and supercritical ORC conditions
with eight working fluids on a combined diesel engine-ORC
system. The model employs two ORC designs, Regenerative-ORC
and Pre-Heating-Regenerative-ORC respectively. The thermodynamic
calculations rely on the first and second law of thermodynamics,
thermal efficiency and exergy destruction factors are the fundamental
parameters evaluated. Additionally, in this study, environmental
and safety, GWP (Global Warming Potential) and ODP (Ozone
Depletion Potential), characteristic of the refrigerants are taken
into consideration as evaluation criteria to define the optimal ORC
configuration and conditions. Consequently, the studys outcomes
reveal that supercritical ORCs with alkane and siloxane are more
suitable for high temperature exhaust waste heat recovery in contrast
to sub-critical conditions.

Files (268.1 kB)
Name Size
10008559.pdf
md5:d11512769c1641c2d330385850846dc9
268.1 kB Download
  • A. Uusitalo, J. Honkatukia, T. Turunen-Saaresti, and J. Larjola, "A thermodynamic analysis of waste heat recovery from reciprocating engine power plants by means of organic rankine cycles," Applied Thermal Engineering, vol. 70, no. 1, pp. 33–41, 2014.

  • B. Peris, J. Navarro-Esbr´ı, and F. Mol´es, "Bottoming organic rankine cycle configurations to increase internal combustion engines power output from cooling water waste heat recovery," Applied Thermal Engineering, vol. 61, no. 2, pp. 364–371, 2013. [10] A. Schuster, S. Karellas, and R. Aumann, "Efficiency optimization potential in supercritical organic rankine cycles," Energy, vol. 35, no. 2, pp. 1033–1039, 2010. [11] S. Glover, R. Douglas, L. Glover, G. McCullough, and S. McKenna, "Automotive waste heat recovery: Working fluid selection and related boundary conditions," International Journal of Automotive Technology, vol. 16, no. 3, pp. 399–409, 2015. [12] R. Freymann, W. Strobl, and A. Obieglo, "The turbosteamer: a system introducing the principle of cogeneration in automotive applications," MTZ worldwide, vol. 69, no. 5, pp. 20–27, 2008. [13] A. F. Agudelo, R. Garc´ıa-Contreras, J. R. Agudelo, and O. Armas, "Potential for exhaust gas energy recovery in a diesel passenger car under european driving cycle," Applied Energy, vol. 174, pp. 201–212, 2016. [14] I. Statistics, "Co2 emissions from fuel combustion-highlights," IEA, Paris http://www. iea. org/co2highlights/co2highlights. pdf. Cited July, 2011. [15] C. Kalra, G. Becquin, J. Jackson, A. L. Laursen, H. Chen, K. Myers, A. Hardy, H. Klockow, and J. Zia, "High-potential working fluids and cycle concepts for next-generation binary organic rankine cycle for enhanced geothermal systems," in 37th Workshop on Geothermal Reservoir Engineering, Stanford, CA, Jan, 2012. [16] S. Glover, R. Douglas, M. De Rosa, X. Zhang, and L. Glover, "Simulation of a multiple heat source supercritical orc (organic rankine cycle) for vehicle waste heat recovery," Energy, vol. 93, pp. 1568–1580, 2015. [17] H. Teng, G. Regner, and C. Cowland, "Achieving high engine efficiency for heavy-duty diesel engines by waste heat recovery using supercritical organic-fluid rankine cycle," SAE Technical Paper, Tech. Rep., 2006. [18] H. Teng, G. Regner, and C. Cowland,, "Waste heat recovery of heavy-duty diesel engines by organic rankine cycle part i: hybrid energy system of diesel and rankine engines," SAE Technical Paper, Tech. Rep., 2007. [19] "Siemens steam turbine sst-060," http://www.energy.siemens.com/ru/en/ fossil-power-generation/steam-turbines/sst-060.htm, accessed: 2002-2017. [20] E. Wang, H. Zhang, B. Fan, M. Ouyang, Y. Zhao, and Q. Mu, "Study of working fluid selection of organic rankine cycle (orc) for engine waste heat recovery," Energy, vol. 36, no. 5, pp. 3406–3418, 2011. [21] J. Hærvig, K. Sørensen, and T. J. Condra, "Guidelines for optimal selection of working fluid for an organic rankine cycle in relation to waste heat recovery," Energy, vol. 96, pp. 592–602, 2016. [22] H. Tian, L. Chang, Y. Gao, G. Shu, M. Zhao, and N. Yan, "Thermo-economic analysis of zeotropic mixtures based on siloxanes for engine waste heat recovery using a dual-loop organic rankine cycle (dorc)," Energy Conversion and Management, vol. 136, pp. 11–26, 2017. [23] T. Falano, H. K. Jeswani, and A. Azapagic, "Assessing the environmental sustainability of ethanol from integrated biorefineries," Biotechnology journal, vol. 9, no. 6, pp. 753–765, 2014.

  • C. Sprouse and C. Depcik, "Review of organic rankine cycles for internal combustion engine exhaust waste heat recovery," Applied thermal engineering, vol. 51, no. 1, pp. 711–722, 2013.

  • D. A. Arias, T. A. Shedd, and R. K. Jester, "Theoretical analysis of waste heat recovery from an internal combustion engine in a hybrid vehicle," SAE Technical Paper, Tech. Rep., 2006.

  • H. Chen, D. Y. Goswami, and E. K. Stefanakos, "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and sustainable energy reviews, vol. 14, no. 9, pp. 3059–3067, 2010.

  • I. Vaja and A. Gambarotta, "Internal combustion engine (ice) bottoming with organic rankine cycles (orcs)," Energy, vol. 35, no. 2, pp. 1084–1093, 2010.

  • K. Kulkarni and A. Sood, "Performance analysis of organic rankine cycle (orc) for recovering waste heat from a heavy duty diesel engine," SAE Technical Paper, Tech. Rep., 2015.

  • R. Law, A. Harvey, and D. Reay, "Opportunities for low-grade heat recovery in the uk food processing industry," Applied thermal engineering, vol. 53, no. 2, pp. 188–196, 2013.

  • S. N. Hossain and S. Bari, "Waste heat recovery from the exhaust of a diesel generator using rankine cycle," Energy Conversion and Management, vol. 75, pp. 141–151, 2013.

2,790
151
views
downloads
All versions This version
Views 2,7902,809
Downloads 151151
Data volume 40.5 MB40.5 MB
Unique views 1,2101,216
Unique downloads 143143

Share

Cite as