Published February 1, 2018 | Version 01
Proposal Open

Graphene Sheets with Halide Perovskite Layers

  • 1. ESPCI Paris, Université PSL, Paris, France

Description

In the pursuit of highly efficient photovoltaic absorbers, halide perovskites are real prospects, but they lack stability and recombinations limit their efficiency. To fix current shortcomings, I propose to widen the range of investigations. In particular, I am seeking to advance the optoelectronic properties of graphene sheets with metal halide perovskite layers. Lowering recombination rates is a challenge for perovskites that may be addressed by transferring charge carriers from the perovskite to the graphene layers. Various synthetic strategies would be methodically elucidated in the aim of enhancing the efficiency of both perovskite solar cells, transistors and light emitters. This proposal may have remarkable outcomes for energy efficient technologies.

Files

proposal-julienbarrier_01.pdf

Files (168.9 kB)

Name Size Download all
md5:aa9d9dd2446a356875d7a8d82a8fa330
168.9 kB Preview Download

Additional details

References

  • Brenner, T. M. et al. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials 1, 15007 (2016), DOI:10.1038/natrevmats.2015.7
  • Cheng, H.-C. et al. van der waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano letters 16, 367–373 (2015). DOI:10.1021/acs.nanolett.5b03944
  • Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015). DOI: 10.1126/science.aac7660
  • Friend, R. F. et al. Luminescent Device. Patent WO2017001542A1, January 5, 2017.
  • Geim, A. K. et al. Van der waals heterostructures. Nature 499, 419–425 (2013). DOI: 10.1038/nature12385
  • Guo, Y. et al. 2D halide perovskite-based van der waals heterostructures: contact evaluation and performance modulation. 2D Materials 4, 035009 (2017). DOI: 10.1088/2053-1583/aa7ac3
  • Li, P. et al. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets. Journal of Physics D: Applied Physics 50, 094002 (2017). DOI:10.1088/1361-6463/aa5623
  • Liu, J. et al. Strategies for chemical modification of graphene and applications of chemically modified graphene. Journal of Materials Chemistry 22, 12435–12452 (2012). DOI: 10.1039/C2JM31218B
  • Novoselov, K. et al. 2D materials and van der waals heterostructures. Science 353, aac9439 (2016). DOI: 10.1126/science.aac9439
  • Stranks, S. D. Non-radiative losses in metal halide perovskites. ACS Energy Letters 7, 1515–1525 (2017). DOI: 10.1021/acsenergylett.7b00239
  • Wang, Z. et al. Efficient ambient-air-stable solar cells with 2d-3d heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy 2, 17135 (2017). DOI: 10.1038/nenergy.2017.135
  • Weidman, M. et al. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS nano 10, 7830–7839 (2016). DOI: 10.1021/acsnano.6b03496
  • Yang, J.-H. et al. Chemical trends of electronic properties of two-dimensional halide perovskites and their potential applications for electronics and optoelectronics. The Journal of Physical Chemistry C 120, 24682–24687 (2016). DOI: 10.1021/acs.jpcc.6b10162
  • Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nature nanotechnology 11 , 872–877 (2016). DOI: 10.1038/nnano.2016.110