Zenodo.org will be unavailable for 2 hours on September 29th from 06:00-08:00 UTC. See announcement.

Dataset Open Access

Ouagadougou very-high resolution land cover map

Tais Grippa; Stefanos Georganos

Yann Forget; Sabine Vanhuysse; Éléonore Wolff; Catherine Linard; Marius Gilbert; Michal Shimoni; Andrew Tatem; Nicole Van Lipzig; Marco millones; Benoit Parmentier; Brian McGill; Oscar Brousse; Matthias Demuzere; Daniel C Casey

This land cover map of Ouagadougou (Burkina Faso) was created from a WorldView3 very-high resolution imagery with a spatial resolution of 0.5 meter. The methodology followed a open-source semi-automated framework [1] that rely on GRASS GIS using a local unsupervised optimization approach for the segmentation part [2-3].

Description of the files:

  • "Landcover.zip" : The direct output from the supervised classification using the Random Forest classifier.
  • "Landcover_Postclassif_Level5_Splitbuildings.zip" : Post-processed version of the previous map ("Landcover"), with reduced misclassifications from the original classification (rule-based used to reclassify the errors, with a focus on built-up classes).
  • "Landcover_Postclassif_Level5_modalfilter3.zip" : Smoothed version of the previous product (modal filter with window 3x3 applied on the "Landcover_Postclassif_Level5_Splitbuildings"). 
  • "Landcover_Postclassif_Level6_Shadowsback.zip" : Corresponds to the "level5_Splitbuildings" with shadows coming from the original classification.
  • "Ouaga_legend_colors.txt" : Text file providing the correspondance between the value of the pixels and the legend labels and a proposition of color to be used.



[1] Grippa, Taïs, Moritz Lennert, Benjamin Beaumont, Sabine Vanhuysse, Nathalie Stephenne, and Eléonore Wolff. 2017. “An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification.” Remote Sensing 9 (4): 358. https://doi.org/10.3390/rs9040358.

[2] Grippa, Tais, Stefanos Georganos, Sabine G. Vanhuysse, Moritz Lennert, and Eléonore Wolff. 2017. “A Local Segmentation Parameter Optimization Approach for Mapping Heterogeneous Urban Environments Using VHR Imagery.” In Proceedings Volume 10431, Remote Sensing Technologies and Applications in Urban Environments II., edited by Wieke Heldens, Nektarios Chrysoulakis, Thilo Erbertseder, and Ying Zhang, 20. SPIE. https://doi.org/10.1117/12.2278422.

[3] Georganos, Stefanos, Taïs Grippa, Moritz Lennert, Sabine Vanhuysse, and Eleonore Wolff. 2017. “SPUSPO: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Efficiently Segmenting Large Heterogeneous Areas.” In Proceedings of the 2017 Conference on Big Data from Space (BiDS’17).



This dataset was produced in the frame of two research project : MAUPP (http://maupp.ulb.ac.be) and REACT (http://react.ulb.be), funded by the Belgian Federal Science Policy Office (BELSPO).

The production of this dataset was founded by BELSPO (Belgian Federal Science Policy Office) in the frame of the STEREO III program, as part of the MAUPP (SR/00/304) and REACT (SR/00/337) project (http://maupp.ulb.ac.be and http://react.ulb.be/).
Files (754.2 MB)
Name Size
203.6 MB Download
163.6 MB Download
179.4 MB Download
207.6 MB Download
307 Bytes Download
All versions This version
Views 822825
Downloads 340340
Data volume 53.1 GB53.1 GB
Unique views 757760
Unique downloads 168168


Cite as