Published June 15, 2018 | Version V1.0
Dataset Open

Ouagadougou very-high resolution land cover map

Description

This land cover map of Ouagadougou (Burkina Faso) was created from a WorldView3 very-high resolution imagery with a spatial resolution of 0.5 meter. The methodology followed a open-source semi-automated framework [1] that rely on GRASS GIS using a local unsupervised optimization approach for the segmentation part [2-3].

Description of the files:

  • "Landcover.zip" : The direct output from the supervised classification using the Random Forest classifier.
  • "Landcover_Postclassif_Level5_Splitbuildings.zip" : Post-processed version of the previous map ("Landcover"), with reduced misclassifications from the original classification (rule-based used to reclassify the errors, with a focus on built-up classes).
  • "Landcover_Postclassif_Level5_modalfilter3.zip" : Smoothed version of the previous product (modal filter with window 3x3 applied on the "Landcover_Postclassif_Level5_Splitbuildings"). 
  • "Landcover_Postclassif_Level6_Shadowsback.zip" : Corresponds to the "level5_Splitbuildings" with shadows coming from the original classification.
  • "Ouaga_legend_colors.txt" : Text file providing the correspondance between the value of the pixels and the legend labels and a proposition of color to be used.

 

References:

[1] Grippa, Taïs, Moritz Lennert, Benjamin Beaumont, Sabine Vanhuysse, Nathalie Stephenne, and Eléonore Wolff. 2017. “An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification.” Remote Sensing 9 (4): 358. https://doi.org/10.3390/rs9040358.

[2] Grippa, Tais, Stefanos Georganos, Sabine G. Vanhuysse, Moritz Lennert, and Eléonore Wolff. 2017. “A Local Segmentation Parameter Optimization Approach for Mapping Heterogeneous Urban Environments Using VHR Imagery.” In Proceedings Volume 10431, Remote Sensing Technologies and Applications in Urban Environments II., edited by Wieke Heldens, Nektarios Chrysoulakis, Thilo Erbertseder, and Ying Zhang, 20. SPIE. https://doi.org/10.1117/12.2278422.

[3] Georganos, Stefanos, Taïs Grippa, Moritz Lennert, Sabine Vanhuysse, and Eleonore Wolff. 2017. “SPUSPO: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Efficiently Segmenting Large Heterogeneous Areas.” In Proceedings of the 2017 Conference on Big Data from Space (BiDS’17).

 

Founding: 

This dataset was produced in the frame of two research project : MAUPP (http://maupp.ulb.ac.be) and REACT (http://react.ulb.be), funded by the Belgian Federal Science Policy Office (BELSPO).

Notes

The production of this dataset was founded by BELSPO (Belgian Federal Science Policy Office) in the frame of the STEREO III program, as part of the MAUPP (SR/00/304) and REACT (SR/00/337) project (http://maupp.ulb.ac.be and http://react.ulb.be/).

Files

Ouaga_Landcover.zip

Files (754.2 MB)

Name Size Download all
md5:73cb5a3d22ce779ef7528ae13a1a0c50
203.6 MB Preview Download
md5:d5ce149ed81e7f65704d63afe444d5c3
163.6 MB Preview Download
md5:03c9304a311616960ef4ec5dbcaad2ed
179.4 MB Preview Download
md5:801d3c8eb5e2f62579814ee276f08c69
207.6 MB Preview Download
md5:9853b845ccfdbea1a76287512eecfeb9
307 Bytes Preview Download

Additional details

Related works

Is compiled by
10.5281/zenodo.1290492 (DOI)
Is documented by
10.3390/rs9040358 (DOI)
10.1117/12.2278422 (DOI)