High quality white matter reference tracts
- 1. Division of Medical Image Computing, German Cancer Research Center
Description
This dataset contains segmentations of 72 white matter tracts obtained from 105 subjects included in the Human Connectome Project (HCP) young adult dataset (https://www.humanconnectome.org/study/hcp-young-adult). The folder names correspond to the ID of the HCP subjects.
The data is part of the following publication: Wasserthal et al., TractSeg - Fast and accurate white matter bundle segmentation. NeuroImage (2018). If you use the data please cite the paper.
The tracts were extracted semi-automatically from whole-brain tractograms. For a detailed description of the tract segmentation process please refer to the paper. The following MRtrix (http://www.mrtrix.org/) commands were used to obtain the whole-brain tractograms:
5ttgen fsl T1w_acpc_dc_restore_brain.nii.gz 5TT.mif -premasked
dwi2response msmt_5tt Diffusion.nii.gz 5TT.mif RF_WM.txt RF_GM.txt RF_CSF.txt -voxels RF_voxels.mif -fslgrad Diffusion.bvecs Diffusion.bvals
dwi2fod msmt_csd Diffusion.nii.gz RF_WM.txt WM_FODs.mif RF_GM.txt GM.mif RF_CSF.txt CSF.mif -mask nodif_brain_mask.nii.gz -fslgrad Diffusion.bvecs Diffusion.bvals
tckgen -algorithm iFOD2 WM_FODs.mif output.tck -act 5TT.mif -backtrack -crop_at_gmwmi -seed_image nodif_brain_mask.nii.gz -maxlength 250 -minlength 40 -number 10M -cutoff 0.06 -maxnum 0
For "CA", "IFO_left", "IFO_right", "UF_left", "UF_right" we used tracking without anatomical constraints:
tckgen -algorithm iFOD2 WM_FODs.mif output.tck -seed_image nodif_brain_mask.nii.gz -maxlength 250 -minlength 40 -number 10M -cutoff 0.06 -maxnum 0
Due to their enormous size, the whole brain tractograms corresponding to the segmented tracts are not included this dataset. Please contact the author of the paper if you are interested in these tractograms.
The following white matter tracts are included:
1: AF_left (Arcuate fascicle)
2: AF_right
3: ATR_left (Anterior Thalamic Radiation)
4: ATR_right
5: CA (Commissure Anterior)
6: CC_1 (Rostrum)
7: CC_2 (Genu)
8: CC_3 (Rostral body (Premotor))
9: CC_4 (Anterior midbody (Primary Motor))
10: CC_5 (Posterior midbody (Primary Somatosensory))
11: CC_6 (Isthmus)
12: CC_7 (Splenium)
13: CG_left (Cingulum left)
14: CG_right
15: CST_left (Corticospinal tract
16: CST_right
17: MLF_left (Middle longitudinal fascicle)
18: MLF_right
19: FPT_left (Fronto-pontine tract)
20: FPT_right
21: FX_left (Fornix)
22: FX_right
23: ICP_left (Inferior cerebellar peduncle)
24: ICP_right
25: IFO_left (Inferior occipito-frontal fascicle)
26: IFO_right
27: ILF_left (Inferior longitudinal fascicle)
28: ILF_right
29: MCP (Middle cerebellar peduncle)
30: OR_left (Optic radiation)
31: OR_right
32: POPT_left (Parieto‐occipital pontine)
33: POPT_right
34: SCP_left (Superior cerebellar peduncle)
35: SCP_right
36: SLF_I_left (Superior longitudinal fascicle I)
37: SLF_I_right
38: SLF_II_left (Superior longitudinal fascicle II)
39: SLF_II_right
40: SLF_III_left (Superior longitudinal fascicle III)
41: SLF_III_right
42: STR_left (Superior Thalamic Radiation)
43: STR_right
44: UF_left (Uncinate fascicle)
45: UF_right
46: CC (Corpus Callosum - all)
47: T_PREF_left (Thalamo-prefrontal)
48: T_PREF_right
49: T_PREM_left (Thalamo-premotor)
50: T_PREM_right
51: T_PREC_left (Thalamo-precentral)
52: T_PREC_right
53: T_POSTC_left (Thalamo-postcentral)
54: T_POSTC_right
55: T_PAR_left (Thalamo-parietal)
56: T_PAR_right
57: T_OCC_left (Thalamo-occipital)
58: T_OCC_right
59: ST_FO_left (Striato-fronto-orbital)
60: ST_FO_right
61: ST_PREF_left (Striato-prefrontal)
62: ST_PREF_right
63: ST_PREM_left (Striato-premotor)
64: ST_PREM_right
65: ST_PREC_left (Striato-precentral)
66: ST_PREC_right
67: ST_POSTC_left (Striato-postcentral)
68: ST_POSTC_right
69: ST_PAR_left (Striato-parietal)
70: ST_PAR_right
71: ST_OCC_left (Striato-occipital)
72: ST_OCC_right
Files
Dataset_105_subjects.zip
Files
(46.7 GB)
Name | Size | Download all |
---|---|---|
md5:e5979050786dcc6fda895e9e5b71c010
|
46.7 GB | Preview Download |
Additional details
References
- Wasserthal et al.: Tractseg - fast and accurate white matter tract segmentation. NeuroImage (2018)
- https://github.com/MIC-DKFZ/TractSeg/