Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published November 29, 2008 | Version v1
Conference paper Open

Chemical detection using electrically open circuits having no electrical connections

Description

This paper presents work to date on investigating chemical detection using a recently developed method for designing, powering and interrogating sensors as electrically open circuits having no electrical connections. In lieu of having each sensor formed from a closed circuit with multiple components electrically connected, an electrically conductive geometric pattern powered using oscillating magnetic fields and capable of storing an electric field and a magnetic field without the need of a closed circuit or electrical connections is used. When electrically active, the sensors (conductive patterns) respond with their own magnetic field whose frequency, amplitude and bandwidth can be correlated with the magnitude of the physical quantities being measured. Preliminary results of using two different detection approaches will be presented. In one method, a thin film of a reactant is deposited on the surface of the open-circuit sensor. Exposure to a specific targeted reactant shifts the resonant frequency of the sensor. In the second method, a coating of conductive material is placed on a thin non-conductive plastic sheet that is placed over the surface of the sensor. There is no physical contact between the sensor and the electrically conductive material. When the conductive material is exposed to a targeted reactant, a chemical reaction occurs that renders the material non-conductive. The change in the materialpsilas electrical resistance within the magnetic field of the sensor alters the sensor response bandwidth and amplitude allowing detection of the reaction without having the reactants in physical contact with the sensor.

Files

article.pdf

Files (422.8 kB)

Name Size Download all
md5:73dec1a1aa0c3af15f549561a30de078
422.8 kB Preview Download