Journal article Open Access

Follow the Plume: The Habitability of Enceladus

McKay, Christopher P.; Anbar, Ariel D.; Porco, Carolyn; Tsou, Peter

The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return. Key Words: Ice—Life detection—Icy moon. Astrobiology 14, 352–355.
Files (110.0 kB)
Name Size
110.0 kB Download
Views 407
Downloads 210
Data volume 23.1 MB
Unique views 400
Unique downloads 205


Cite as