Published April 3, 2008 | Version v1
Journal article Open

Superinsulator and quantum synchronization

Description

Synchronized oscillators are ubiquitous in nature1, and synchronization plays a key part in various classical and quantum phenomena. Several experiments2, 3, 4 have shown that in thin superconducting films, disorder enforces the droplet-like electronic texture—superconducting islands immersed into a normal matrix—and that tuning disorder drives the system from superconducting to insulating behaviour. In the vicinity of the transition, a distinct state4 forms: a Cooper-pair insulator, with thermally activated conductivity. It results from synchronization of the phase of the superconducting order parameter at the islands across the whole system5. Here we show that at a certain finite temperature, a Cooper-pair insulator undergoes a transition to a superinsulating state with infinite resistance. We present experimental evidence of this transition in titanium nitride films and show that the superinsulating state is dual to the superconducting state: it is destroyed by a sufficiently strong critical magnetic field, and breaks down at some critical voltage that is analogous to the critical current in superconductors.

Files

article.pdf

Files (513.8 kB)

Name Size Download all
md5:29151beb28767ff9303bd5dacd09deae
513.8 kB Preview Download