Published September 26, 2002 | Version v1
Journal article Open

Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency

Description

Apoptosis is a form of programmed cell death that is controlled by aspartate-specific cysteine proteases called caspases. In the immune system, apoptosis counters the proliferation of lymphocytes to achieve a homeostatic balance, which allows potent responses to pathogens but avoids autoimmunity1,2. The CD95 (Fas, Apo-1) receptor triggers lymphocyte apoptosis by recruiting Fas-associated death domain (FADD), caspase-8 and caspase-10 proteins into a death-inducing signalling complex3,4. Heterozygous mutations in CD95, CD95 ligand or caspase-10 underlie most cases of autoimmune lymphoproliferative syndrome (ALPS), a human disorder that is characterized by defective lymphocyte apoptosis, lymphadenopathy, splenomegaly and autoimmunity5,6,7,8,9,10,11,12,13,14. Mutations in caspase-8 have not been described in ALPS, and homozygous caspase-8 deficiency causes embryonic lethality in mice. Here we describe a human kindred with an inherited genetic deficiency of caspase-8. Homozygous individuals manifest defective lymphocyte apoptosis and homeostasis but, unlike individuals affected with ALPS, also have defects in their activation of T lymphocytes, B lymphocytes and natural killer cells, which leads to immunodeficiency. Thus, caspase-8 deficiency in humans is compatible with normal development and shows that caspase-8 has a postnatal role in immune activation of naive lymphocytes.

Files

article.pdf

Files (388.7 kB)

Name Size Download all
md5:f07b3b7dd343d3454c59c13722c12e36
388.7 kB Preview Download