Published January 1, 2008 | Version v1
Journal article Open

The Pursuit of ES Cell Lines of Domesticated Ungulates.

Description

In contrast to differentiated cells, embryonic stem cells (ESC) maintain an undifferentiated state, have the ability to self-renew, and exhibit pluripotency, i.e., they can give rise to most if not all somatic cell types and to the germ cells, egg and sperm. These characteristics make ES cell lines important resources for the advancement of human regenerative medicine, and, if established for domesticated ungulates, would help make possible the improvement of farm animals through their contribution to genetic engineering technology. Combining other genetic engineering technologies, such as somatic cell nuclear transfer (SCNT) with ESC technology may result in synergistic gains in the ability to precisely make and study genetic alterations in mammals. Unfortunately, despite significant advances in our understanding of human and mouse ESC, the derivation of ES cell lines from ungulate species has been unsuccessful. This may result from a lack of understanding of species-specific mechanisms that promote or influence cell pluripotency. Thorough molecular characterizations, including the elucidation of stem cell ¿marker¿ signaling cascade hierarchy, species-appropriate pluripotency markers, and pluripotency-associated chromatin alterations in the genomes of ungulate species, should improve the chances of developing efficient, reproducible technologies for the establishment of ES cell lines of economically important species like the pig, cow, goat, sheep and horse.

Files

article.pdf

Files (752.0 kB)

Name Size Download all
md5:d0169d9c3fe0ce6d38445e6affb64561
752.0 kB Preview Download