Published February 1, 2007 | Version v1
Journal article Open

Design, microfabrication, and analysis of micrometer-sized cylindrical ion trap arrays

Description

A description of the design and microfabrication of arrays of micrometer-scale cylindrical ion traps is offered. Electrical characterization and initial ion trapping experiments with a massively parallel array of 5 microm internal radius (r(0)) sized cylindrical ion traps (CITs) are also described. The ion trap, materials, and design are presented and shown to be critical in achieving minimal trapping potential while maintaining minimal power consumption. The ion traps, fabricated with metal electrodes, have inner radii of 1, 2, 5, and 10 microm and range from 5 to 24 microm in height. The electrical characteristics of packaged ion trap arrays were measured with a vector network analyzer. The testing focused on trapping toluene (C(7)H(8)), mass 91, 92, or 93 amu, in the 5 microm sized CITs. Ions were formed via electron impact ionization and were ejected by turning off the rf voltage applied to the ring electrode; a current signal was collected at this time. Optimum ionization and trapping conditions, such as a sufficient pseudopotential well and high ionization to ion loss rate ratio (as determined by simulation), proved to be difficult to establish due to the high device capacitance and the presence of exposed dielectric material in the trapping region. However, evidence was obtained suggesting the trapping of ions in 1%-15% of the traps in the array. These first tests on micrometer-scale CITs indicated the necessary materials and device design modifications for realizing ultrasmall and low power ion traps.

Files

article.pdf

Files (436.0 kB)

Name Size Download all
md5:8e1047b8128507f63873d8e60c99eee7
436.0 kB Preview Download