Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals
Description
Recently, we demonstrated that PbSe nanocrystal quantum dots can efficiently produce multiple electron-hole pairs (excitons) in response to a single absorbed photon. To address the generality of this carrier-multiplication phenomenon to other materials, we perform a comparative study of multiexciton generation in PbSe and CdSe nanocrystals that have distinctly different electronic structures. We find that both materials exhibit high-efficiency carrier multiplication and the activation threshold is lower in CdSe nanocrystals than in PbSe nanocrystals (∼2.5 vs ∼2.9 energy gaps). Furthermore, the efficiencies of multiexciton generation are nearly identical for both materials despite a vast difference in both energy structures and carrier relaxation behaviors, strongly suggesting that this phenomenon is general to quantum-confined semiconductor nanocrystals.
Files
article.pdf
Files
(596.5 kB)
Name | Size | Download all |
---|---|---|
md5:5ed81bb96bac46d63997f7ff0705ca4c
|
596.5 kB | Preview Download |