Journal article Open Access

Model of plastic deformation for extreme loading conditions

Preston, Dean L.; Tonks, Davis L.; Wallace, Duane C.

We present a model of metallic plastic flow suitable for numerical simulations of explosive loading and high velocity impacts. The dependence of the plastic strain rate on applied stress at low strain rates is of the Arrhenius form but with an activation energy that is singular at zero stress so that the deformation rate vanishes in that limit. Work hardening is modeled as a generalized Voce law. At strain rates exceeding 109 s−1, work hardening is neglected, and the rate dependence of the flow stress is calculated using Wallace's theory of overdriven shocks in metals [D.C. Wallace, Phys. Rev. B 24, 5597 (1981); 24, 5607 (1981)]. The thermal-activation regime is continuously merged into the strong shock limit, yielding a model applicable over the 15 decades in strain rate from 10−3 to 1012 s−1. The model represents all aspects of constitutive behavior seen in Hopkinson bar and low-rate data, including a rapid increase in the constant-strain rate sensitivity, with 10% accuracy. High-pressure behavior is controlled by the shear modulus, G(ρ,T), and the melting temperature, Tm(ρ). There are eleven material parameters in addition to G(ρ,T) and Tm(ρ). Parameters for Cu, U, Ta, Mo, V, Be, 304 SS, and 21-6-9 SS are provided.

Files (405.0 kB)
Name Size
article.pdf
md5:4207ba548b9d1f78a7c29b5119a8509f
405.0 kB Download
73
83
views
downloads
Views 73
Downloads 83
Data volume 33.6 MB
Unique views 72
Unique downloads 78

Share

Cite as