Journal article Open Access

Linked Reactivity at Mineral-Water Interfaces Through Bulk Crystal Conduction

Yanina, Svetlana V.; Rosso, Kevin M.

The semiconducting properties of a wide range of minerals are often ignored in the study of their interfacial geochemical behavior. We show that surface-specific charge density accumulation reactions combined with bulk charge carrier diffusivity create conditions under which interfacial electron transfer reactions at one surface couple with those at another via current flow through the crystal bulk. Specifically, we observed that a chemically induced surface potential gradient across hematite (alpha-Fe2O3) crystals is sufficiently high and the bulk electrical resistivity sufficiently low that dissolution of edge surfaces is linked to simultaneous growth of the crystallographically distinct (001) basal plane. The apparent importance of bulk crystal conduction is likely to be generalizable to a host of naturally abundant semiconducting minerals playing varied key roles in soils, sediments, and the atmosphere.

Files (483.5 kB)
Name Size
article.pdf
md5:ed061bd31ae453cd87886c3f1e10a2f0
483.5 kB Download
30
59
views
downloads
Views 30
Downloads 59
Data volume 28.5 MB
Unique views 30
Unique downloads 56

Share

Cite as