Journal article Open Access

Atmospheric Sun Protection Factor on Clear Days: Its Observed Dependence on Solar Zenith Angle and Its Relevance to the Shadow Rule for Sun Protection

Holloway, Leith

Global irradiances measured in seven 5‐nm bands of UV‐B at Rockville, MD (39.1°N, 77.1oW) on 28 clear days near the summer solstice are convoluted with the erythemal action spectrum of human skin to determine dose rates at various hours of the day. These rates are averaged with respect to solar zenith angle to obtain the diurnal variation of mean dose rate and of the Sun Protection Factor (SPF) of the atmosphere (reciprocal of the normalized atmospheric transmissivity) on a typical clear summer day in Rockville. At a 45o zenith angle the atmospheric SPF is computed to be 2.7 and increases rapidly to greater than 7 at 60o. Dose rates are integrated with respect to time to obtain estimates of mean doses for various periods during clear days at Rockville in mid summer and near the autumnal equinox. In mid summer the effective erythemal UV‐B exposure during the period when the solar zenith angle is less than 45o is about five times greater than that during the remainder of the day. These observations provide scientific basis for a shadow rule for solar UV‐B protection: when shadows are shorter than objects casting them, sunburn is much more likely than at other times.

Files (553.3 kB)
Name Size
article.pdf
md5:17165d7a93d9a7e09bf4c43d418ab2fd
553.3 kB Download
104
33
views
downloads
Views 104
Downloads 33
Data volume 18.3 MB
Unique views 100
Unique downloads 33

Share

Cite as