Planned intervention: On Wednesday April 3rd 05:30 UTC Zenodo will be unavailable for up to 2-10 minutes to perform a storage cluster upgrade.
Published November 1, 2001 | Version v1
Journal article Open

Can Diving-induced Tissue Nitrogen Supersaturation Increase the Chance of Acoustically Driven Bubble Growth in Marine Mammals?

Description

The potential for acoustically mediated causes of stranding in cetaceans (whales and dolphins) is of increasing concern given recent stranding events associated with anthropogenic acoustic activity. We examine a potentially debilitating non-auditory mechanism called rectified diffusion. Rectified diffusion causes gas bubble growth, which in an insonified animal may produce emboli, tissue separation and high, localized pressure in nervous tissue. Using the results of a dolphin dive study and a model of rectified diffusion for low-frequency exposure, we demonstrate that the diving behavior of cetaceans prior to an intense acoustic exposure may increase the chance of rectified diffusion. Specifically, deep diving and slow ascent/descent speed contributes to increased gas-tissue saturation, a condition that amplifies the likelihood of rectified diffusion. The depth of lung collapse limits nitrogen uptake per dive and the surface interval duration influences the amount of nitrogen washout from tissues between dives. Model results suggest that low-frequency rectified diffusion models need to be advanced, that the diving behavior of marine mammals of concern needs to be investigated to identify at-risk animals, and that more intensive studies of gas dynamics within diving marine mammals should be undertaken.

Files

article.pdf

Files (307.5 kB)

Name Size Download all
md5:318792391fd73e9b663eac14db71d8cb
307.5 kB Preview Download