Journal article Open Access

SHREC 2018 – Protein Shape Retrieval

Langenfeld, Florent; Axenopoulos, Apostolos; Chatzitofis, Anargyros; Craciun, Daniela; Daras, Petros; Du, Bowen; Giachetti, Andrea; Lai, Yu-kun; Li, Haisheng; Li, Yingbin; Masoumi, Majid; Peng, Yuxu; Rosin, Paul; Sirugue, Jeremy; Sun, Li; Thermos, Spyridon; Toews, Matthew; Wei, Yang; Wu, Yujuan; Zhai, Yujia; Zhao, Tianyu; Zheng, Yanping; Montes, Matthieu

Proteins are macromolecules central to biological processes that display a dynamic and complex surface. They display mul- tiple conformations differing by local (residue side-chain) or global (loop or domain) structural changes which can impact drastically their global and local shape. Since the structure of proteins is linked to their function and the disruption of their interactions can lead to a disease state, it is of major importance to characterize their shape. In the present work, we report the performance in enrichment of six shape-retrieval methods (3D-FusionNet, GSGW, HAPT, DEM, SIWKS and WKS) on a 2 267 protein structures dataset generated for this protein shape retrieval track of SHREC’18.

Files (3.2 MB)
Name Size
3.2 MB Download
Views 140
Downloads 124
Data volume 394.8 MB
Unique views 127
Unique downloads 121


Cite as