Development of mitochondrial DNA cytochrome c oxidase subunit I primer sets to construct DNA barcoding library using next-generation sequencing
Creators
- 1. Tomakomai Experimental Forest, Hokkaido University, Tomakomai, Japan
- 2. Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
- 3. Institute of Natural and Environmental Sciences, University of Hyogo, hyogo, Japan
- 4. Botanical Gardens, Osaka Metropolitan University, Osaka, Japan
- 5. Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
- 6. Komaba museum, University of Tokyo, Tokyo, Japan
Description
Insects are one of the most diverse eukaryotic groups on the planet, with one million or more species present, including those yet undescribed. The DNA barcoding system has been developed, which has aided in the identification of cryptic species and undescribed species. The mitochondrial cytochrome c oxidase I region (mtDNA COI) has been utilised for the barcoding analysis of insect taxa. Thereafter, next-generation sequencing (NGS) technology has been developed, allowing for rapid acquisition of massive amounts of sequence data for genetic analyses. Although NGS-based PCR primers designed to amplify the mtDNA COI region have been developed, their target regions were only a part of COI region and/or there were taxonomic bias for PCR amplification. As the mtDNA COI region is a traditional DNA marker for the DNA barcoding system, modified primers for this region would greatly contribute to taxonomic studies. In this study, we redesigned previously developed PCR primer sets that targetted the mtDNA COI barcoding region to improve amplification efficiency and to enable us to conduct sequencing analysis on NGS. As a result, the redesigned primer sets achieved a high success rate (> 85%) for species examined in this study, covering four insect orders (Coleoptera, Lepidoptera, Orthoptera and Odonata). Thus, by combining the primers with developed primer sets for 12S or 16S rRNA regions, we can conduct more detailed taxonomic, phylogeographic and conservation genetic studies using NGS.
Files
BDJ_article_117014.pdf
Files
(388.5 kB)
Name | Size | Download all |
---|---|---|
md5:13e4d629c427638b3f6a286361a5b682
|
388.5 kB | Preview Download |
System files
(208.3 kB)
Name | Size | Download all |
---|---|---|
md5:bb80e2d564df508bdd9c1aa69acabd52
|
208.3 kB | Download |
Linked records
Additional details
References
- Buckley T, Marske K, Attanayake D (2009) Identifying glacial refugia in a geographic parthenogen using palaeoclimate modelling and phylogeography: the New Zealand stick insect Argosarchus horridus (White). Molecular Ecology 18 (22): 4650‑4663. https://doi.org/10.1111/j.1365-294x.2009.04396.x
- Burns J, Janzen D, Hajibabaei M, Hallwachs W, Hebert PN (2008) DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservación Guanacaste, Costa Rica. Proceedings of the National Academy of Sciences 105 (17): 6350‑6355. https://doi.org/10.1073/pnas.0712181105
- Çıplak B, Yahyaoğlu Ö, Uluar O, Doğan Ö, Başibüyük HH, Korkmaz EM (2022) Phylogeography of Pholidopterini: Revising molecular clock calibration by Mid-Aegean Trench. Insect Systematics & Evolution 53 (5): 515‑535. https://doi.org/10.1163/1876312x-bja10033
- Costello M, Wilson S, Houlding B (2011) Predicting total global species richness using rates of species description and estimates of taxonomic effort. Systematic Biology 61 (5). https://doi.org/10.1093/sysbio/syr080
- Costello M, May R, Stork N (2013) Response to comments on "Can we name earth's species before they go extinct?". Science 341 (6143): 237‑237. https://doi.org/10.1126/science.1237381
- Deagle B, Jarman S, Coissac E, Pompanon F, Taberlet P (2014) DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters 10 (9). https://doi.org/10.1098/rsbl.2014.0562
- Elbrecht V, Leese F (2017) Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Frontiers in Environmental Science 5 (11). https://doi.org/10.3389/fenvs.2017.00011
- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3 (5): 294‑299.
- Gaston K (1991) The magnitude of global insect species richness. Conservation Biology 5 (3): 283‑296. https://doi.org/10.1111/j.1523-1739.1991.tb00140.x
- Gotelli N, Colwell R (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4 (4): 379‑391. https://doi.org/10.1046/j.1461-0248.2001.00230.x
- Hebert PN, Cywinska A, Ball S, deWaard J (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences 270 (1512): 313‑321. https://doi.org/10.1098/rspb.2002.2218
- Hebert PN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Systematic Biology 54 (5): 852‑859. https://doi.org/10.1080/10635150500354886
- Katoh K (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30 (14): 3059‑3066. https://doi.org/10.1093/nar/gkf436
- Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30 (4): 772‑780. https://doi.org/10.1093/molbev/mst010
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35 (6): 1547‑1549. https://doi.org/10.1093/molbev/msy096
- Leese F, Sander M, Buchner D, Elbrecht V, Haase P, Zizka VA (2020) Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environmental DNA 3 (1): 261‑276. https://doi.org/10.1002/edn3.177
- Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology 10 (1). https://doi.org/10.1186/1742-9994-10-34
- Liu S, Li Y, Lu J, Su X, Tang M, Zhang R, Zhou L, Zhou C, Yang Q, Ji Y, Yu D, Zhou X (2013) SOAPBarcode: revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons. Methods in Ecology and Evolution 4 (12): 1142‑1150. https://doi.org/10.1111/2041-210x.12120
- Liu S, Yang C, Zhou C, Zhou X (2017) Filling reference gaps via assembling DNA barcodes using high-throughput sequencing – moving toward barcoding the world. GigaScience 6: 1‑8. https://doi.org/10.17504/protocols.io.j99cr96
- Magurran A (1988) Ecological diversity and its measurement. Princeton University Press, Princeton. [ISBN 978-94-015-7360-3] https://doi.org/10.1007/978-94-015-7358-0
- Marquina D, Andersson A, Ronquist F (2018) New mitochondrial primers for metabarcoding of insects, designed and evaluated using in silico methods. Molecular Ecology Resources 19 (1): 90‑104. https://doi.org/10.1111/1755-0998.12942
- May RM (1988) How Many Species Are There on Earth? Science 241 (4872): 1441‑1449. https://doi.org/10.1126/science.241.4872.1441
- May RM (1990) How many species? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 330 (1257): 293‑304. https://doi.org/10.1098/rstb.1990.0200
- Meier R, Wong W, Srivathsan A, Foo M (2015) $1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen‐rich samples. Cladistics 32 (1): 100‑110. https://doi.org/10.1111/cla.12115
- Nakahama N, Uchida K, Ushimaru A, Isagi Y (2018) Historical changes in grassland area determined the demography of semi-natural grassland butterflies in Japan. Heredity 121 (2): 155‑168. https://doi.org/10.1038/s41437-018-0057-2
- Nguyen L, Schmidt H, von Haeseler A, Minh BQ (2014) IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution 32 (1): 268‑274. https://doi.org/10.1093/molbev/msu300
- Rambaut A (2016) FigTree v1.4.3., a graphical viewer of phylogenetic trees. Release date: 2016-10-04. URL: http://tree.bio.ed.ac.uk/software/figtree/
- Rebijith KB, Asokan R, Kumar NKK, Krishna V, Chaitanya BN, Ramamurthy VV (2013) DNA barcoding and elucidation of cryptic aphid species (Hemiptera: Aphididae) in India. Bulletin of Entomological Research 103 (5): 601‑610. https://doi.org/10.1017/s0007485313000278
- Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics 16 (6): 276‑277. https://doi.org/10.1016/s0168-9525(00)02024-2
- Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4 (4): 406‑425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Shokralla S, Porter T, Gibson J, Dobosz R, Janzen D, Hallwachs W, Golding GB, Hajibabaei M (2015) Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Scientific Reports 5 (1). https://doi.org/10.1038/srep09687
- Stork N (1993) How many species are there? Biodiversity and Conservation 2 (3): 215‑232. https://doi.org/10.1007/bf00056669
- Stork N (2018) How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth? Annual Review of Entomology 63 (1): 31‑45. https://doi.org/10.1146/annurev-ento-020117-043348
- Suyama Y, Hirota S, Matsuo A, Tsunamoto Y, Mitsuyuki C, Shimura A, Okano K (2021) Complementary combination of multiplex high‐throughput DNA sequencing for molecular phylogeny. Ecological Research 37 (1): 171‑181. https://doi.org/10.1111/1440-1703.12270
- Takenaka M, Yano K, Suzuki T, Tojo K (2023) Development of novel PCR primer sets for DNA barcoding of aquatic insects, and the discovery of some cryptic species. Limnology 24 (2): 121‑136. https://doi.org/10.1007/s10201-022-00710-5
- Tanabe A, Toju H (2013) Two new computational methods for universal DNA barcoding: A benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants. PLOS One 8 (10). https://doi.org/10.1371/journal.pone.0076910
- Yang C, Zheng Y, Tan S, Meng G, Rao W, Yang C, Bourne D, O'Brien P, Xu J, Liao S, Chen A, Chen X, Jia X, Zhang A, Liu S (2020) Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics 21 (1). https://doi.org/10.1186/s12864-020-07255-w
- Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, Tang M, Fu R, Li J, Huang Q (2013) Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaScience 2 (1). https://doi.org/10.1186/2047-217x-2-4