Journal article Open Access

Modification of biodegradable fibrous scaffolds with Epidermal Growth Factor by emulsion electrospinning for promotion of epithelial cells proliferation

Tenchurin, T.H.; Lyundup, A.V.; Demchenko, A.G.; Krasheninnikov, M.E.; Balyasin, M.V.; Klabukov, I.D.; Shepelev, A.D.; Mamagulashvili, V.G.; Orehov, A.S.; Chvalun, S.N.; Dyuzheva, T.G.

Supporting of a physiologically relevant cellular microenvironment is currently a grand challenge in the design of tissue-engineering grafts based on biocompatible and biodegradable polymeric materials. The aim of this research was to develop a new technique of a fibrous polycaprolactone-based scaffold modification with epidermal growth factor (EGF) and assessment of its effect on scaffold properties and proliferative activity of epithelial cells in vitro. Fibrous scaffolds from EGF-functionalized polycaprolactone has received by the emulsion electrospinning method. Prolonged yield of EGF upon the material destruction and its biological effect on the MCF7 cell line proliferation have been estimated using ELISA and iCELLigence real-time cell analysis for respectively.

Files (1.4 MB)
Name Size
Modification_of_biodegradable_fibrous_scaffolds_Genes_and_Cells_47-52.pdf
md5:f157247f72c3d0d58828a9f11a34d76b
1.4 MB Download
  • Aamodt J.M., Grainger D.W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 2016; 86: 68–82.
  • Araki F., Nakamura H., Nojima N. et al. Stability of Recombinat Human Epidermal Growth Factor in Various Solutions. Chemical and Pharmaceutical Bulletin 1989; 37(2): 404-6.
  • Boonstra J., Rijken P., Humbel B. et al. The epidermal growth factor. Cell Biol. Int. 1995; 19(5): 413-30.
  • Edgar L., McNamara K., Wong T. et al. Heterogeneity of Scaffold Biomaterials in Tissue Engineering. Materials (Basel) 2016; 9(5): 332.
  • Hardwicke J., Moseley R., Stephens P. et al. Bioresponsive dextrin − rhEGF conjugates: In vitro evaluation in models relevant to its proposed use as a treatment for chronic wounds. Molecular pharmaceutics 2010; 7(3): 699-707.
  • Ji W., Sun Y., Yang F. et al. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharmaceutical research 2011; 28(6): 1259-72.
  • Nasonova, M.V., Shishkova, D.K., Antonova, L.V. et al. Subcutaneous Implantation of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly (ε-caprolactone) Scaffolds Modified with Growth Factors. Sovremennye Tehnologii v Medicine 2017; 9(2): 7-18.
  • Sebe I., Szabó P., Kállai-Szabó B. et al. Incorporating small molecules or biologics into nanofibers for optimized drug release: A review. Int. J. Pharm. 2015; 494(1): 516-30.
  • Sell S., Barnes C., Smith M. et al. Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polymer International 2007; 56(11): 1349-60.
  • Senga K., Mostov K.E., Mitaka T. et al. Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25. Mol. Biol. Cell. 2012; 23(15): 2845-55.
  • Simón-Yarza T., Formiga F.R., Tamayo E. et al. Vascular Endothelial Growth Factor-Delivery Systems for Cardiac Repair: An Overview. Theranostics 2012; 2(6): 541-52.
  • Wang X., Ding B., Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today 2013; 16(6): 229-41.
  • Yang B., Zhou L., Peng B. et al. In vitro comparative evaluation of recombinant growth factors for tissue engineering of bladder in patients with neurogenic bladder. J. Surg. Res. 2014; 186(1): 63-72.
  • Антонова Л.В., Кривкина Е.О., Сергеева Е.А. и др. Тканеинженерный матрикс, модифицированный биологически активными молекулами для направленной регенерации тканей. Комплексные проблемы сердечно-сосудистых заболеваний 2016; 5(1): 18-25.
  • Арутюнян И.В., Тенчурин Т.Х., Кананыхина Е.Ю. и др. Нетканые материалы на основе поликапролактона для тканевой инженерии: выбор структуры и способа заселения. Гены и клетки 2017; 12(1): 62-71.
  • Люндуп А.В., Демченко А.Г., Тенчурин Т.Х. и др. Повышение эффективности заселения биодеградируемых матриксов стромальными и эпителиальными клетками при динамическом культивировании. Гены и клетки 2016; 11(3): 102-7.
  • Севостьянова В.В., Elgudin Y.L., Wnek G.E. и др. Свойства тканеинженерных матриксов из поликапролактона, импрегнированных факторами роста VEGF и bFGF. Клеточная трансплантология и тканевая инженерия 2012; 7(3): 62-7.
  • Холмберг К., Йенсон Б., Кронберг Б. и соавт. Поверхностно-активные вещества и полимеры в водных растворах. М.: БИНОМ Лаборатория знаний; 2007.
69
81
views
downloads
Views 69
Downloads 81
Data volume 115.5 MB
Unique views 65
Unique downloads 79

Share

Cite as