Published June 6, 2017 | Version v1
Conference paper Open

Detection of Terrorism-related Twitter Communities using Centrality Scores

Description

Social media are widely used among terrorists to communicate and disseminate their activities. User-to-user interaction (e.g. mentions, follows) leads to the formation of complex networks, with topology that reveals key-players and key-communities in the terrorism domain. Both the administrators of social media platforms and Law Enforcement Agencies seek to identify not only single users but groups of terrorism-related users so that they can reduce the impact of their information exchange efforts. To this end, we propose a novel framework that combines community detection with key player identification to retrieve communities of terrorism-related
social media users. Experiments show that most of the members of each retrieved key-community are already suspended by Twitter, violating its terms, and are hence associated with terrorism-oriented content with high probability.

Files

MFSec2017-community_detection.pdf

Files (1.1 MB)

Name Size Download all
md5:604f8fe8bb0dc25c0dc1cf317c8c16f6
1.1 MB Preview Download

Additional details

Funding

European Commission
TENSOR – Retrieval and Analysis of Heterogeneous Online Content for Terrorist Activity Recognition 700024