Conference paper Open Access

Content Recommendation through Semantic Annotation of User Reviews and Linked Data

Vagliano, Iacopo; Monti, Diego; Scherp, Ansgar; Morisio, Maurizio

Nowadays, most recommender systems exploit user-provided ratings to infer their preferences. However, the growing popularity of social and e-commerce websites has encouraged users to also share comments and opinions through textual reviews. In this paper, we introduce a new recommendation approach which exploits the semantic annotation of user reviews to extract useful and non-trivial information about the items to recommend. It also relies on the knowledge freely available in the Web of Data, notably in DBpedia and Wikidata, to discover other resources connected with the annotated entities. We evaluated our approach in three domains, using both DBpedia and Wikidata. The results showed that our solution provides a better ranking than another recommendation method based on the Web of Data, while it improves in novelty with respect to traditional techniques based on ratings.

Extended technical report available at
Files (532.3 kB)
Name Size
532.3 kB Download
Views 52
Downloads 75
Data volume 39.9 MB
Unique views 40
Unique downloads 74


Cite as