OPPOSITION-BASED LEARNING PARTICLE SWARM OPTIMIZATION OF RUNNING GAIT FOR HUMANOID ROBOT
Creators
- 1. School of Computer Engineering University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan city, 528402, Guangdong province, China
Description
This paper investigates the problem of running gait optimization for humanoid robot. In order to reduce energy consumption and guarantee the dynamic balance including both horizontal and vertical stability, a novel running gait generation based on opposition-based learning particle swarm optimization (PSO) is proposed which aims at high energy efficiency with better stability. In the proposed scheme of running gait generation, a population initiation policy based on domain knowledge is employed, which helps to guide searching direction guidance at the beginning. A population update mechanism based on opposition learning is proposed for speeding up the convergence and improving the diversity. Simulation results validate the proposed method.
Files
10.21307_ijssis-2017-801.pdf
Files
(374.2 kB)
Name | Size | Download all |
---|---|---|
md5:b3bf97f5cff470a4c59521a420dd8e9c
|
374.2 kB | Preview Download |