Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published June 30, 2017 | Version v1
Conference paper Open

Generic to Specific Recognition Models for Membership Analysis in Group Videos

  • 1. Queen Mary, Univ. of London
  • 2. Centre for Res. & Technol. Hellas, Inf. Technol. Inst.

Description

Automatic understanding and analysis of groups has attracted increasing attention in the vision and multimedia communities in recent years. However, little attention has been paid to the automatic analysis of group membership - i.e., recognizing which group the individual in question is part of. This paper presents a novel two-phase Support Vector Machine (SVM) based specific recognition model that is learned using an optimized generic recognition model. We conduct a set of experiments using a database collected to study group analysis from multimodal cues while each group (i.e., four participants together) were watching a number of long movie segments. Our experimental results show that the proposed specific recognition model (52%) outperforms the generic recognition model trained across all different videos (35%) and the independent recognition model trained directly on each specific video (33%) using linear SVM.

Files

fg17_preprint.pdf

Files (1.6 MB)

Name Size Download all
md5:4084e6a219b933ae0c474447a299a361
1.6 MB Preview Download

Additional details

Funding

MOVING – Training towards a society of data-savvy information professionals to enable open leadership innovation 693092
European Commission