Published February 1, 2017 | Version 10006686
Journal article Open

Group Invariant Solutions of Nonlinear Time-Fractional Hyperbolic Partial Differential Equation

Description

In this paper, we have investigated the nonlinear
time-fractional hyperbolic partial differential equation (PDE) for
its symmetries and invariance properties. With the application of
this method, we have tried to reduce it to time-fractional ordinary
differential equation (ODE) which has been further studied for exact
solutions.

Files

10006686.pdf

Files (361.5 kB)

Name Size Download all
md5:01adce58ef9966e777739c33e79dc018
361.5 kB Preview Download

Additional details

References

  • K.S. Miller, B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
  • A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Frcational Differential Equations, Elsevier, San Diego, 2006.
  • P.J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts Math., vol. 107, 1993.
  • G.W. Bluman, J.D. Cole, Similarity Methods for Differential Equations, Springer Verlag, 1974.
  • L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, 1982.
  • Q. Huang, R. Zhdanov, Symmetries and Exact Solutions of the Time Fractional Harry-Dym Equation with Riemann-Liouville Derivative, Physica A, vol. 409, 2014, pp. 110-118.
  • K. Al-Khaled, Numerical Solution of Time-fractional PDEs Using Sumudu Decomposition Method, Romanian Journal of Physics, vol. 60, 2015, pp. 99-110.
  • Y. Zhang, Lie Symmetry Analysis to General Time-Fractional Korteweg-De Vries Equation, Fractional Differential Calculus, vol.5, 2015, pp. 125-135.
  • V.D. Djordjevic, T.M. Atanackovic, Similarity Solutions to Nonlinear Heat Conduction and Burgers/Korteweg-De Vries Fractional Equations, Journal of Computational Applied Mathematics, vol. 222, 2008, pp. 701-714. [10] M. Gaur, K. Singh, On Group Invariant Solutions of Fractional Order Burgers-Poisson Equation, Applied Mathematics and Computation, vol. 244, 2014, pp. 870-877. [11] H. Liu, J. Li, Q. Zhang, Lie Symmetry Analysis and Exact Explicit Solutions for General Burgers Equations, Journal of Computational Applied Mathematics, vol. 228, 2009, pp. 1-9. [12] H. Liu, Complete Group Classifications and Symmetry Reductions of the Fractional fifth-order KdV Types of Equations, Studies in Applied Mathematics, vol. 131, 2013, pp. 317-330. [13] A. Bansal, R.K. Gupta, Lie point Symmetries and Similarity Solutions of the Time-Dependent Coefficients Calogero-Degasperis Equation, Physica Scripta, vol. 86, 2012, pp. 035005 (11 pages). [14] A. Bansal, R.K. Gupta, Modified (G'/G)-Expansion Method for Finding Exact Wave Solutions of Klein-Gordon-Schrodinger Equation, Mathematical Methods in the Applied Sciences, vol. 35, 2012, pp. 1175-1187. [15] R.K. Gupta, A. Bansal, Painleve Analysis, Lie Symmetries and Invariant Solutions of potential Kadomstev Petviashvili Equation with Time Dependent Coefficients, Applied Mathematics and Computation, vol. 219, 2013, pp. 5290-5302. [16] R. Kumar, R.K. Gupta, S.S. Bhatia, Lie Symmetry Analysis and Exact Solutions for Variable Coefficients Generalised Kuramoto-Sivashinky Equation, Romanian Reports in Physics, vol. 66, 2014, pp. 923-928. [17] M. Pandey, Lie Symmetries and Exact Solutions of Shallow Water Equations with Variable Bottom, Internation Journal of Nonlinear Science and Numerical Simulation, vol. 16, 2015, pp. 337-342. [18] V.S. Kiryakova, Generalized Fractional Calculus and Applications, CRC press,1993.