Journal article Open Access

Detection of Leaks in Water Mains Using Ground Penetrating Radar

Alaa Al Hawari; Mohammad Khader; Tarek Zayed; Osama Moselhi

Ground Penetrating Radar (GPR) is one of the most effective electromagnetic techniques for non-destructive non-invasive subsurface features investigation. Water leak from pipelines is the most common undesirable reason of potable water losses. Rapid detection of such losses is going to enhance the use of the Water Distribution Networks (WDN) and decrease threatens associated with water mains leaks. In this study, GPR approach was developed to detect leaks by implementing an appropriate imaging analyzing strategy based on image refinement, reflection polarity and reflection amplitude that would ease the process of interpreting the collected raw radargram image.

Files (456.4 kB)
Name Size
10004124.pdf
md5:af7fb11ac3743ffb9c2fc5a062159fc8
456.4 kB Download
  • B. conyers, L. 1997. Ground Penetrating Radar for Archeology.Rowman & Littlefield Publishers, Inc. ISBN:9780759123489.

  • Cataldo A, Persico R, Leucci G, De Benedetto E, Cannazza G., 2014. Time Domain Reflectometry, Ground Penetrating Radar and Electrical Resistivity Tomography: A Comparative Analysis of Alternative Approaches for Leak Detection in Underground Pipes. NDT&E International, 62: 14-28.

  • Costello SB, Chapman DN, Rogers CDF, Metje N. 2007. Underground asset location and condition assessment technologies. Tunnel Underground Space Technol. 22(5–6): 524-542

  • Gehrig, M., Morris, D., Bryant, J. 2004. Ground penetrating radar for concrete evaluation studies. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.522.4134&rep=rep1&type=pdf (Accessed June 2015). [10] Fahmy, M., Moselhi, O. 2010. Automated Detection and Location of Leaks in Water Mains Using Infrared Photography. Journal of Performance of Constructed Facilities. Vol24:242-248

  • Kingdom B, Liemberger R, Marin P., 2006. The Challenge of Reducing Non-Revenue Water (NRW) in Developing Countries. The International Bank for Reconstruction and Development, Paper Series 8, 1-52.

  • Kuiper N, Rowell C, Shomar B., 2015. High levels of molybdenum in Qatar's groundwater and potential impacts. Journal of Geochemical Exploration, 150: 16-24.

  • Liu Z, Kleiner Y. 2013. State of the art review of inspection technologies for condition assessment of water pipes. Measurement. 46(1):1-15.

  • Liu, Z., Kleiner, Y., Rajani, B., Wang, L., & Condit, W. 2012. Condition Assessment Technologies for Water Transmission and Distribution Systems. United States Environmental Protection Agency (USEPA), Washington DC.

  • Xu Q, Liu R, Chen Q, Li R., 2014. Review on water leakage control in distribution networks and the associated environmental benefits. Journal of Environmental Sciences, 26: 955-961.

84
87
views
downloads
All versions This version
Views 8485
Downloads 8787
Data volume 39.7 MB39.7 MB
Unique views 8485
Unique downloads 8686

Share

Cite as